首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Accurate 3D Reconstruction from Small Motion Clip for Rolling Shutter Cameras
【24h】

Accurate 3D Reconstruction from Small Motion Clip for Rolling Shutter Cameras

机译:小型运动剪辑的精确3D重构,适用于卷帘相机

获取原文
获取原文并翻译 | 示例

摘要

Structure from small motion has become an important topic in 3D computer vision as a method for estimating depth, since capturing the input is so user-friendly. However, major limitations exist with respect to the form of depth uncertainty, due to the narrow baseline and the rolling shutter effect. In this paper, we present a dense 3D reconstruction method from small motion clips using commercial hand-held cameras, which typically cause the undesired rolling shutter artifact. To address these problems, we introduce a novel small motion bundle adjustment that effectively compensates for the rolling shutter effect. Moreover, we propose a pipeline for a fine-scale dense 3D reconstruction that models the rolling shutter effect by utilizing both sparse 3D points and the camera trajectory from narrow-baseline images. In this reconstruction, the sparse 3D points are propagated to obtain an initial depth hypothesis using a geometry guidance term. Then, the depth information on each pixel is obtained by sweeping the plane around each depth search space near the hypothesis. The proposed framework shows accurate dense reconstruction results suitable for various sought-after applications. Both qualitative and quantitative evaluations show that our method consistently generates better depth maps compared to state-of-the-art methods.
机译:小动作的结构已成为3D计算机视觉中一种重要的深度估计方法,因为捕获输入非常用户友好。但是,由于基线狭窄和卷帘效应,在深度不确定性方面存在主要限制。在本文中,我们提出了使用商用手持摄像机从小型运动剪辑中进行密集的3D重建的方法,该方法通常会导致不希望的滚动快门伪影。为了解决这些问题,我们引入了一种新颖的小运动束调节器,该调节器可以有效地补偿卷帘效应。此外,我们提出了一种用于精细尺度密集3D重建的管道,该管道可通过利用稀疏3D点和来自窄基线图像的相机轨迹来模拟卷帘快门效果。在此重构中,稀疏3D点将使用几何引导项进行传播以获得初始深度假设。然后,通过扫视假设附近的每个深度搜索空间周围的平面来获得每个像素的深度信息。提出的框架显示了适用于各种抢手应用的精确密集重建结果。定性和定量评估都表明,与最新方法相比,我们的方法始终可以生成更好的深度图。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号