首页> 外文期刊>Parallel Computing >Parallel algorithms for computing all possible subset regression models using the QR decomposition
【24h】

Parallel algorithms for computing all possible subset regression models using the QR decomposition

机译:使用QR分解来计算所有可能的子集回归模型的并行算法

获取原文
获取原文并翻译 | 示例

摘要

Efficient parallel algorithms for computing all possible subset regression models are proposed. The algorithms are based on the dropping columns method that generates a regression tree. The properties of the tree are exploited in order to provide an efficient load balancing which results in no inter-processor communication. Theoretical measures of complexity suggest linear speedup. The parallel algorithms are extended to deal with the general linear and seemingly unrelated regression models. The case where new variables are added to the regression model is also considered. Experimental results on a shared memory machine are presented and analyzed.
机译:提出了用于计算所有可能的子集回归模型的高效并行算法。这些算法基于生成回归树的列删除法。利用树的属性是为了提供有效的负载平衡,从而导致没有处理器间的通信。理论上的复杂度表明线性加速。扩展了并行算法,以处理一般的线性和看似无关的回归模型。还考虑将新变量添加到回归模型的情况。提出并分析了共享存储计算机上的实验结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号