首页> 外文期刊>Algorithmica >Algorithms for Computing the QR Decomposition of a Set of Matrices with Common Columns
【24h】

Algorithms for Computing the QR Decomposition of a Set of Matrices with Common Columns

机译:计算具有公共列的一组矩阵的QR分解的算法

获取原文
获取原文并翻译 | 示例

摘要

The QR decomposition of a set of matrices which have common columns is investigated. The triangular factors of the QR decompositions are represented as nodes of a weighted directed graph. An edge between two nodes exists if and only if the columns of one of the matrices is a subset of the columns of the other. The weight of an edge denotes the computational complexity of deriving the triangular factor of the destination node from that of the source node. The problem is equivalent to constructing the graph and finding the minimum cost for visiting all the nodes. An algorithm which computes the QR decompositions by deriving the minimum spanning tree of the graph is proposed. Theoretical measures of complexity are derived and numerical results from the implementation of this and alternative heuristic algorithms are given.
机译:研究了具有公共列的一组矩阵的QR分解。 QR分解的三角因子表示为加权有向图的节点。当且仅当其中一个矩阵的列是另一个矩阵的子集时,两个节点之间才存在一条边。边缘的权重表示从源节点的三角形因子得出目标节点的三角形因子的计算复杂度。问题等同于构造图并找到访问所有节点的最低成本。提出了一种通过推导图的最小生成树来计算QR分解的算法。推导了复杂度的理论度量,并从该算法的实现和其他启发式算法中给出了数值结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号