首页> 外文期刊>Parallel Computing >Evaluating adaptive and predictive power management strategies for optimizing visualization performance on supercomputers
【24h】

Evaluating adaptive and predictive power management strategies for optimizing visualization performance on supercomputers

机译:评估适应性和预测电源管理策略,以优化超级计算机上的可视化性能

获取原文
获取原文并翻译 | 示例

摘要

Power is becoming an increasingly scarce resource on the next generation of supercomputers, and should be used wisely to improve overall performance. One strategy for improving power usage is hardware overprovisioning, i.e., systems with more nodes than can be run at full power simultaneously without exceeding the system-wide power limit. With this study, we compare two strategies for allocating power throughout an overprovisioned system - adaptation and prediction - in the context of visualization workloads. While adaptation has been suitable for workloads with more regular execution behaviors, it may not be as suitable on visualization workloads, since they can have variable execution behaviors. Our study considers a total of 104 experiments, which vary the rendering workload, power budget, allocation strategy, and node concurrency, including tests processing data sets up to 1 billion cells and using up to 18,432 cores across 512 nodes. Overall, we find that prediction is a superior strategy for this use case, improving performance up to 27% compared to an adaptive strategy.Power is becoming an increasingly scarce resource on the next generation of supercomputers, and should be used wisely to improve overall performance. One strategy for improving power usage is hardware overprovisioning, i.e., systems with more nodes than can be run at full power simultaneously without exceeding the system-wide power limit. With this study, we compare two strategies for allocating power throughout an overprovisioned system - adaptation and prediction - in the context of visualization workloads. While adaptation has been suitable for workloads with more regular execution behaviors, it may not be as suitable on visualization workloads, since they can have variable execution behaviors. Our study considers a total of 104 experiments, which vary the rendering workload, power budget, allocation strategy, and node concurrency, including tests processing data sets up to 1 billion cells and using up to 18,432 cores across 512 nodes. Overall, we find that prediction is a superior strategy for this use case, improving performance up to 27% compared to an adaptive strategy.
机译:权力正在成为下一代超级计算机上越来越稀缺的资源,应该明智地使用,以提高整体性能。一种改进电力使用的策略是硬件过度支持,即,具有更多节点的系统,其系统可以同时在全功率上运行而不超过系统范围的功率限制。通过本研究,我们比较在可视化工作负载的背景下在过度支持的系统适应和预测中分配电力的两个策略。虽然适应适用于具有更多常规执行行为的工作负载,但它可能不如可视化工作负载那么合适,因为它们可以具有可变的执行行为。我们的研究考虑了总共104个实验,其改变了渲染工作量,电力预算,分配策略和节点并发,包括测试数据设置高达10亿个单元格,并在512个节点上使用高达18,432个核心。总的来说,我们发现预测是这种用例的卓越策略,与自适应策略相比提高了27%的性能.Power正在成为下一代超级计算机上越来越稀缺的资源,并且应该明智地用于提高整体性能。一种改进电力使用的策略是硬件过度支持,即,具有更多节点的系统,其系统可以同时在全功率上运行而不超过系统范围的功率限制。通过本研究,我们比较在可视化工作负载的背景下在过度支持的系统适应和预测中分配电力的两个策略。虽然适应适用于具有更多常规执行行为的工作负载,但它可能不如可视化工作负载那么合适,因为它们可以具有可变的执行行为。我们的研究考虑了总共104个实验,其改变了渲染工作量,电力预算,分配策略和节点并发,包括测试数据设置高达10亿个单元格,并在512个节点上使用高达18,432个核心。总的来说,我们发现预测是这种用例的优越策略,与自适应策略相比,提高性能高达27%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号