首页> 外文期刊>Parallel Computing >Performance Characteristics Of Biomolecular Simulations On High-end Systems With Multi-core Processors
【24h】

Performance Characteristics Of Biomolecular Simulations On High-end Systems With Multi-core Processors

机译:具有多核处理器的高端系统上生物分子模拟的性能特征

获取原文
获取原文并翻译 | 示例

摘要

Biological processes occurring inside cell involve multiple scales of time and length; many popular theoretical and computational multi-scale techniques utilize biomolecular simulations based on molecular dynamics. Till recently, the computing power required for simulating the relevant scales was even beyond the reach of fastest supercomputers. The availability of petaFLOPS-scale computing power in near future holds great promise. Unfortunately, the biosimulations software technology has not kept up with the changes in hardware. In particular, with the introduction of multi-core processing technologies in systems with tens of thousands of processing cores, it is unclear whether the existing biomolecular simulation frameworks will be able to scale and to utilize these resources effectively. While the multi-core processing systems provide higher processing capabilities, their memory and network subsystems are posing new challenges to application and system software developers. In this study, we attempt to characterize computation, communication and memory efficiencies of biomolecular simulations on Teraflops-scale Cray XT systems, which contain dual-core Opteron processors. We identify that the application efficiencies using the multi-core processors reduce with the increase of the simulated system size. Further, we measure the communication overhead of using both cores in the processor simultaneously and identify that the slowdown in the MPI communication performance can significantly lower the achievable performance in the dual-core execution mode. We conclude that not only the biomolecular simulations need to be aware of the underlying multi-core hardware in order to achieve maximum performance but also the system software needs to provide processor and memory placement features in the high-end systems. Our results on stand-alone multi-core AMD and Intel systems confirm that combinations of processor and memory affinity schemes cause significant performance variations for our target test cases.
机译:细胞内部发生的生物过程涉及多个尺度的时间和长度。许多流行的理论和计算多尺度技术都利用基于分子动力学的生物分子模拟。直到最近,模拟相关比例所需的计算能力甚至超出了最快的超级计算机的能力。 petaFLOPS规模的计算能力在不久的将来将具有广阔的前景。不幸的是,生物模拟软件技术未能跟上硬件的变化。特别是,随着在具有成千上万个处理核心的系统中引入多核处理技术,目前尚不清楚现有的生物分子模拟框架是否将能够有效扩展和利用这些资源。尽管多核处理系统提供了更高的处理能力,但它们的内存和网络子系统对应用程序和系统软件开发人员提出了新的挑战。在这项研究中,我们试图表征包含双核Opteron处理器的Teraflops级Cray XT系统上生物分子模拟的计算,通信和存储效率。我们发现,使用多核处理器的应用效率会随着模拟系统大小的增加而降低。此外,我们测量了同时使用处理器中两个内核的通信开销,并确定了MPI通信性能的下降会大大降低双核执行模式下可实现的性能。我们得出的结论是,不仅生物分子仿真需要了解底层的多核硬件以实现最佳性能,而且系统软件还需要在高端系统中提供处理器和内存放置功能。我们在独立的多核AMD和Intel系统上的结果证实,处理器和内存相似性方案的组合会导致目标测试用例的性能显着变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号