首页> 外文期刊>Parallel Computing >Analysis and performance estimation of the Conjugate Gradient method on multiple CPUs
【24h】

Analysis and performance estimation of the Conjugate Gradient method on multiple CPUs

机译:多CPU共轭梯度法的分析与性能估计

获取原文
获取原文并翻译 | 示例

摘要

The Conjugate Gradient (CG) method is a widely-used iterative method for solving linear systems described by a (sparse) matrix. The method requires a large amount of Sparse-Matrix Vector (SpMV) multiplications, vector reductions and other vector operations to be performed. We present a number of mappings for the SpMV operation on modern programmable CPUs using the Block Compressed Sparse Row (BCSR) format. Further, we show that reordering matrix blocks substantially improves the performance of the SpMV operation, especially when small blocks are used, so that our method outperforms existing state-of-the-art approaches, in most cases. Finally, a thorough analysis of the performance of both SpMV and CG methods is performed, which allows us to model and estimate the expected maximum performance for a given (unseen) problem.
机译:共轭梯度法(CG)是求解(稀疏)矩阵描述的线性系统的一种广泛使用的迭代方法。该方法需要执行大量的稀疏矩阵向量(SpMV)乘法,向量归约和其他向量运算。我们使用块压缩稀疏行(BCSR)格式为现代可编程CPU上的SpMV操作提供了许多映射。此外,我们证明对矩阵块进行重新排序可以显着改善SpMV操作的性能,尤其是在使用小块时,因此,在大多数情况下,我们的方法优于现有的最新方法。最后,对SpMV和CG方法的性能进行了全面的分析,这使我们可以对给定(未见问题)的问题进行建模和估计预期的最大性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号