首页> 外文期刊>Parallel Computing >Sparse matrix multiplication: The distributed block-compressed sparse row library
【24h】

Sparse matrix multiplication: The distributed block-compressed sparse row library

机译:稀疏矩阵乘法:分布式块压缩稀疏行库

获取原文
获取原文并翻译 | 示例

摘要

Efficient parallel multiplication of sparse matrices is key to enabling many large-scale calculations. This article presents the DBCSR (Distributed Block Compressed Sparse Row) library for scalable sparse matrix-matrix multiplication and its use in the CP2K program for linear-scaling quantum-chemical calculations. The library combines several approaches to implement sparse matrix multiplication in a way that performs well and is demonstra-bly scalable. Parallel communication has well-defined limits. Data volume decreases with (O)(1/p~(1/2)) with increasing process counts P and every process communicates with at most (O)(P~(1/2)) others. Local sparse matrix multiplication is handled efficiently using a combination of techniques: blocking elements together in an application-relevant way, an autotuning library for small matrix multiplications, cache-oblivious recursive multiplication, and multithreading. Additionally, on-the-fly filtering not only increases sparsity but also avoids performing calculations that fall below the filtering threshold. We demonstrate and analyze the performance of the DBCSR library and its various scaling behaviors.
机译:稀疏矩阵的有效并行乘法是实现许多大规模计算的关键。本文介绍了可扩展的稀疏矩阵矩阵乘法的DBCSR(分布式块压缩稀疏行)库,及其在CP2K程序中用于线性缩放量子化学计算的方法。该库结合了几种方法,可以以良好的性能并且可演示地扩展实现稀疏矩阵乘法。并行通信具有明确的限制。数据量随着(O)(1 / p〜(1/2))的增加而减少,并且进程数P增加,并且每个进程最多与(O)(P〜(1/2))个其他进程进行通信。可以使用多种技术有效地处理局部稀疏矩阵乘法:以与应用程序相关的方式将元素阻塞在一起,用于小矩阵乘法的自动调整库,可忽略高速缓存的递归乘法和多线程。此外,即时过滤不仅会增加稀疏度,而且还能避免执行低于过滤阈值的计算。我们演示并分析了DBCSR库的性能及其各种扩展行为。

著录项

  • 来源
    《Parallel Computing》 |2014年第6期|47-58|共12页
  • 作者单位

    Physical Chemistry Institute, University of Zuerich, Winterthurerstrasse 190, CH-8057 Zuerich,Switzerland,High Performance Computing Group, Information Technology Services, ETH Zuerich, SOW H 12, Sonneggstrasse 63, CH-8092 Zuerich, Switzerland;

    Department of Materials, ETH Zuerich, Wolfgang-Pauli-Strasse 27, 8093 Zuerich, Switzerland;

    IBM Research Division, Zuerich Research Laboratory, 8803 Ruschlikon, Switzerland,Physical Chemistry Institute, University of Zuerich, Winterthurerstrasse 190, CH-8057 Zuerich,Switzerland;

    Physical Chemistry Institute, University of Zuerich, Winterthurerstrasse 190, CH-8057 Zuerich,Switzerland;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Sparse matrix; Parallel sparse matrix multiplication; Quantum chemistry;

    机译:稀疏矩阵;并行稀疏矩阵乘法;量子化学;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号