首页> 外文期刊>IEEE Transactions on Parallel and Distributed Systems >Parallel Blockwise Knowledge Distillation for Deep Neural Network Compression
【24h】

Parallel Blockwise Knowledge Distillation for Deep Neural Network Compression

机译:深度神经网络压缩的平行群体知识蒸馏

获取原文
获取原文并翻译 | 示例

摘要

Deep neural networks (DNNs) have been extremely successful in solving many challenging AI tasks in natural language processing, speech recognition, and computer vision nowadays. However, DNNs are typically computation intensive, memory demanding, and power hungry, which significantly limits their usage on platforms with constrained resources. Therefore, a variety of compression techniques (e.g., quantization, pruning, and knowledge distillation) have been proposed to reduce the size and power consumption of DNNs. Blockwise knowledge distillation is one of the compression techniques that can effectively reduce the size of a highly complex DNN. However, it is not widely adopted due to its long training time. In this article, we propose a novel parallel blockwise distillation algorithm to accelerate the distillation process of sophisticated DNNs. Our algorithm leverages local information to conduct independent blockwise distillation, utilizes depthwise separable layers as the efficient replacement block architecture, and properly addresses limiting factors (e.g., dependency, synchronization, and load balancing) that affect parallelism. The experimental results running on an AMD server with four Geforce RTX 2080Ti GPUs show that our algorithm can achieve 3x speedup plus 19 percent energy savings on VGG distillation, and 3.5x speedup plus 29 percent energy savings on ResNet distillation, both with negligible accuracy loss. The speedup of ResNet distillation can be further improved to 3.87 when using four RTX6000 GPUs in a distributed cluster.
机译:深度神经网络(DNN)在立即解决了许多挑战性的AI任务时,他现在已经在自然语言处理,语音识别和计算机视觉中解决了许多挑战性的AI任务。然而,DNN通常是计算密集型,记忆要求和电力饥饿,这显着限制了对具有受约束资源的平台的使用。因此,已经提出了各种压缩技术(例如,量化,修剪和知识蒸馏)以降低DNN的尺寸和功耗。块状知识蒸馏是可以有效地降低高度复杂的DNN尺寸的压缩技术之一。然而,由于其长期培训时间,它没有被广泛采用。在本文中,我们提出了一种新的平行植被蒸馏算法,以加速复杂DNN的蒸馏过程。我们的算法利用局部信息进行独立的块蒸馏,利用深度可分离层作为有效的替代块架构,并正确地解决了影响并行性的限制因素(例如,依赖性,同步和负载平衡)。具有四个GeForce RTX 2080TI GPU的AMD服务器上运行的实验结果表明,我们的算法可以实现3倍的快速加上VGG蒸馏的节能加上19%的节能,3.5倍的加速度加上Resnet蒸馏节省的29%,具有可忽略的准确性损失。当在分布式簇中使用四个RTX6000 GPU时,RESET蒸馏的加速可以进一步提高到3.87。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号