首页> 外文期刊>Parallel and Distributed Systems, IEEE Transactions on >Scheduling Parallel Real-Time Tasks on the Minimum Number of Processors
【24h】

Scheduling Parallel Real-Time Tasks on the Minimum Number of Processors

机译:在最小处理器数量上调度并行实时任务

获取原文
获取原文并翻译 | 示例

摘要

Recently, several parallel frameworks have emerged to utilize the increasing computational capacity of multiprocessors. Parallel tasks are distinguished from traditional sequential tasks in that the subtasks contained in a single parallel task can simultaneously execute on multiple processors. In this study, we consider the scheduling problem of minimizing the number of processors on which the parallel real-time tasks feasibly run. In particular, we focus on scheduling sporadic parallel real-time tasks, in which precedence constraints between subtasks of each parallel task are expressed using a directed acyclic graph (DAG). To address the problem, we formulate an optimization problem that aims to minimize the maximum processing capacity for executing the given tasks. We then suggest a polynomial solution consisting of three steps: (1) transform each parallel real-time task into a series of multithreaded segments, while respecting the precedence constraints of the DAG; (2) selectively extend the segment lengths; and (3) interpret the problem as a flow network to balance the flows on the terminal edges. We also provide the schedulability bound of the proposed solution: it has a capacity augmentation bound of 2. Our experimental results show that the proposed approach yields higher performance than one developed in a recent study.
机译:最近,已经出现了几种并行框架利用了多处理器的计算能力增加。并行任务与传统的连续任务区分开来,因为在单个并行任务中包含的子任务可以同时在多个处理器上执行。在这项研究中,我们考虑最小化并行实时任务可行运行的处理器数量的调度问题。特别地,我们专注于调度散发并行实时任务,其中使用定向的非循环图(DAG)表示每个并行任务的子任务之间的优先约束。为了解决问题,我们制定了一个优化问题,旨在最大限度地减少执行给定任务的最大处理能力。然后,我们建议由三个步骤组成的多项式解决方案:(1)将每个并行实时任务转换为一系列多线程段,同时尊重DAG的优先约束; (2)选择性地延长段长度; (3)将问题解释为流量网络以平衡终端边缘上的流量。我们还提供所提出的解决方案的调度率:它具有2.我们的实验结果表明,我们的实验结果表明,该方法的性能比最近的研究中发育的更高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号