首页> 外文期刊>IEEE Transactions on Parallel and Distributed Systems >Parallelization model for successive approximations to the Rayleigh-Ritz linear variational problem
【24h】

Parallelization model for successive approximations to the Rayleigh-Ritz linear variational problem

机译:瑞利-里兹线性变分问题逐次逼近的并行化模型

获取原文
获取原文并翻译 | 示例

摘要

Many of the differential equations arising in science and engineering can be recast in the form of a matrix eigenvalue problem. Solution of this equation within the context of the Rayleigh-Ritz variational method may be viewed as one of the fundamental tasks of numerical analysis. Successive approximation approaches to the Rayleigh-Ritz problem seek to improve eigenvectors and eigenfunctions by sequentially refining a trial function. Parallelization of successive approximation approaches has been demonstrated numerous times in the literature; these studies addressed either the successive approximations or the matrix diagonalization levels of the algorithm. It is shown in this paper that these two strategies may be applied independently of one another, and the advantages of applying both parallelization levels simultaneously to the problem are discussed. Performance estimates for a two-tiered parallelization strategy are obtained by extrapolating from existing published performance data for which the two levels of parallelization were applied separately.
机译:科学和工程学中出现的许多微分方程都可以矩阵特征值问题的形式重铸。在Rayleigh-Ritz变分方法的背景下,该方程的解可被视为数值分析的基本任务之一。逐次逼近Rayleigh-Ritz问题的方法试图通过依次完善试验函数来改进特征向量和特征函数。逐次逼近方法的并行化已在文献中多次证明。这些研究解决了算法的逐次逼近或矩阵对角化水平。本文表明,这两种策略可以彼此独立地应用,并且讨论了同时将两个并行化级别应用于该问题的优点。两层并行化策略的性能估计是通过从现有的已发布的性能数据(分别应用两个并行化级别)进行推断得出的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号