首页> 外文期刊>IEEE Transactions on Parallel and Distributed Systems >Algorithmic redistribution methods for block-cyclic decompositions
【24h】

Algorithmic redistribution methods for block-cyclic decompositions

机译:块循环分解的算法重新分配方法

获取原文
获取原文并翻译 | 示例

摘要

This article presents various data redistribution methods for block-partitioned linear algebra algorithms operating on dense matrices that are distributed in a block-cyclic fashion. Because the algorithmic partitioning unit and the distribution blacking factor are most often chosen to be equal, severe alignment restrictions are induced on the operands, and optimal values with respect to performance are architecture dependent. The techniques presented in this paper redistribute data "on the fly," so that the user's data distribution blocking factor becomes independent from the architecture dependent algorithmic partitioning. These techniques are applied to the matrix-matrix multiplication operation. A performance analysis along with experimental results shows that alignment restrictions can then be removed and that high performance can be maintained across platforms independently from the user's data distribution blocking factor.
机译:本文介绍了针对以块循环方式分布的密集矩阵进行块划分的线性代数算法的各种数据重新分配方法。因为算法划分单元和分布黑化因子通常被选择为相等,所以在操作数上引入了严格的对齐限制,并且关于性能的最佳值取决于体系结构。本文介绍的技术可以“即时”重新分配数据,以便用户的数据分配阻塞因素变得独立于依赖于体系结构的算法分区。这些技术应用于矩阵矩阵乘法运算。性能分析和实验结果表明,可以消除对齐限制,并且可以独立于用户的数据分发阻塞因素,在各个平台之间保持高性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号