首页> 外文期刊>Parallel and Distributed Systems, IEEE Transactions on >Parallel Implementation of the Irregular Terrain Model (ITM) for Radio Transmission Loss Prediction Using GPU and Cell BE Processors
【24h】

Parallel Implementation of the Irregular Terrain Model (ITM) for Radio Transmission Loss Prediction Using GPU and Cell BE Processors

机译:使用GPU和单元BE处理器的不规则地形模型(ITM)的无线电传输损耗预测的并行实现

获取原文
获取原文并翻译 | 示例

摘要

The Irregular Terrain Model (ITM), also known as the Longley-Rice model, predicts long-range average transmission loss of a radio signal based on atmospheric and geographic conditions. Due to variable terrain effects and constantly changing atmospheric conditions which can dramatically influence radio wave propagation, there is a pressing need for computational resources capable of running hundreds of thousands of transmission loss calculations per second. Multicore processors, like the NVIDIA Graphics Processing Unit (GPU) and IBM Cell Broadband Engine (BE), offer improved performance over mainstream microprocessors for ITM. We study architectural features of the Tesla C870 GPU and Cell BE and evaluate the effectiveness of architecture-specific optimizations and parallelization strategies for ITM on these platforms. We assess the GPU implementations that utilize both global and shared memories along with fine-grained parallelism. We assess the Cell BE implementations that utilize direct memory access, double buffering, and SIMDization. With these optimization strategies, we achieve less than a second of computation time on each platform which is not feasible with a general purpose processor, and we observe that the GPU delivers better performance than Cell BE in terms of total execution time and performance per watt metrics by a factor of 2.3x and 1.6x, respectively.
机译:不规则地形模型(ITM)也称为Longley-Rice模型,它根据大气和地理条件预测无线电信号的远程平均传输损耗。由于可变的地形效应和不断变化的大气条件会极大地影响无线电波的传播,因此迫切需要能够每秒运行数十万次传输损耗计算的计算资源。诸如NVIDIA图形处理单元(GPU)和IBM Cell Broadband Engine(BE)之类的多核处理器提供了优于ITM主流微处理器的性能。我们研究了Tesla C870 GPU和Cell BE的架构功能,并评估了这些平台上ITM特定于架构的优化和并行化策略的有效性。我们评估了利用全局和共享内存以及细粒度并行性的GPU实现。我们评估了使用直接内存访问,双缓冲和SIMD化的Cell BE实现。通过这些优化策略,我们在每个平台上均不到一秒钟的计算时间,而这对于通用处理器而言是不可行的,并且我们观察到,在总执行时间和每瓦特性能方面,GPU提供的性能优于Cell BE。分别是2.3倍和1.6倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号