首页> 外文期刊>IEEE Transactions on Parallel and Distributed Systems >GraphCT: Multithreaded Algorithms for Massive Graph Analysis
【24h】

GraphCT: Multithreaded Algorithms for Massive Graph Analysis

机译:GraphCT:用于大规模图分析的多线程算法

获取原文
获取原文并翻译 | 示例

摘要

The digital world has given rise to massive quantities of data that include rich semantic and complex networks. A social graph, for example, containing hundreds of millions of actors and tens of billions of relationships is not uncommon. Analyzing these large data sets, even to answer simple analytic queries, often pushes the limits of algorithms and machine architectures. We present GraphCT, a scalable framework for graph analysis using parallel and multithreaded algorithms on shared memory platforms. Utilizing the unique characteristics of the Cray XMT, GraphCT enables fast network analysis at unprecedented scales on a variety of input data sets. On a synthetic power law graph with 2 billion vertices and 17 billion edges, we can find the connected components in 2 minutes. We can estimate the betweenness centrality of a similar graph with 537 million vertices and over 8 billion edges in under 1 hour. GraphCT is built for portability and performance.
机译:数字世界已经产生了大量数据,其中包括丰富的语义和复杂的网络。例如,包含数亿演员和数百亿关系的社交图谱并不少见。分析这些大型数据集,甚至是为了回答简单的分析查询,常常会推翻算法和机器体系结构的极限。我们提出了GraphCT,这是一种在共享内存平台上使用并行和多线程算法进行图形分析的可扩展框架。利用Cray XMT的独特特性,GraphCT能够以前所未有的规模对各种输入数据集进行快速的网络分析。在具有20亿个顶点和170亿条边的合成幂律图上,我们可以在2分钟内找到连接的分量。我们可以在1小时内估算出具有5.37亿个顶点和80亿条边的相似图的中间度。 GraphCT专为可移植性和性能而构建。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号