首页> 外文期刊>Parallel and Distributed Systems, IEEE Transactions on >Maximizing the Throughput of Hash Tables in Network Devices with Combined SRAM/DRAM Memory
【24h】

Maximizing the Throughput of Hash Tables in Network Devices with Combined SRAM/DRAM Memory

机译:结合使用SRAM / DRAM存储器的网络设备中哈希表的吞吐量最大化

获取原文
获取原文并翻译 | 示例

摘要

Hash tables form a core component of many algorithms as well as network devices. Because of their large size, they often require a combined memory model, in which some of the elements are stored in a fast memory (for example, cache or on-chip SRAM) while others are stored in much slower memory (namely, the main memory or off-chip DRAM). This makes the implementation of real-life hash tables particularly delicate, as a suboptimal choice of the hashing scheme parameters may result in a higher average query time, and therefore in a lower throughput. In this paper, we focus on multiple-choice hash tables. Given the number of choices, we study the tradeoff between the load of a hash table and its average lookup time. The problem is solved by analyzing an equivalent problem: the expected maximum matching size of a random bipartite graph with a fixed left-side vertex degree. Given two choices, we provide exact results for any finite system, and also deduce asymptotic results as the fast memory size increases. In addition, we further consider other variants of this problem and model the impact of several parameters. Finally, we evaluate the performance of our models on Internet backbone traces, and illustrate the impact of the memories speed difference on the choice of parameters. In particular, we show that the common intuition of entirely avoiding slow memory accesses by using highly efficient schemes (namely, with many fast-memory choices) is not always optimal.
机译:哈希表构成许多算法以及网络设备的核心组件。由于它们的大小很大,因此通常需要组合的内存模型,其中某些元素存储在快速存储器中(例如,高速缓存或片上SRAM),而其他元素则存储在速度较慢的存储器中(即主存储器)。内存或片外DRAM)。这使得现实的哈希表的实现特别精细,因为哈希方案参数的次优选择可能会导致更长的平均查询时间,从而导致更低的吞吐量。在本文中,我们专注于多项选择哈希表。给定选择的数量,我们研究了哈希表的负载与其平均查找时间之间的权衡。通过分析一个等效问题可以解决该问题:带有固定左侧顶点度的随机二分图的预期最大匹配大小。给定两个选择,我们可以为任何有限系统提供精确的结果,并且随着快速内存大小的增加,还可以得出渐近结果。此外,我们进一步考虑了此问题的其他变体,并对几个参数的影响进行了建模。最后,我们评估了模型在Internet主干线上的性能,并说明了内存速度差异对参数选择的影响。尤其是,我们表明,通过使用高效的方案(即具有许多快速存储器选择)完全避免慢速存储器访问的直觉并不总是最佳的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号