首页> 外文期刊>Networking, IEEE/ACM Transactions on >High-Throughput and Memory-Efficient Multimatch Packet Classification Based on Distributed and Pipelined Hash Tables
【24h】

High-Throughput and Memory-Efficient Multimatch Packet Classification Based on Distributed and Pipelined Hash Tables

机译:基于分布式和流水线哈希表的高吞吐量和内存高效的多匹配数据包分类

获取原文
获取原文并翻译 | 示例

摘要

The emergence of new network applications, such as the network intrusion detection system and packet-level accounting, requires packet classification to report all matched rules instead of only the best matched rule. Although several schemes have been proposed recently to address the multimatch packet classification problem, most of them require either huge memory or expensive ternary content addressable memory (TCAM) to store the intermediate data structure, or they suffer from steep performance degradation under certain types of classifiers. In this paper, we decompose the operation of multimatch packet classification from the complicated multidimensional search to several single-dimensional searches, and present an asynchronous pipeline architecture based on a signature tree structure to combine the intermediate results returned from single-dimensional searches. By spreading edges of the signature tree across multiple hash tables at different stages, the pipeline can achieve a high throughput via the interstage parallel access to hash tables. To exploit further intrastage parallelism, two edge-grouping algorithms are designed to evenly divide the edges associated with each stage into multiple work-conserving hash tables. To avoid collisions involved in hash table lookup, a hybrid perfect hash table construction scheme is proposed. Extensive simulation using realistic classifiers and traffic traces shows that the proposed pipeline architecture outperforms HyperCuts and B2PC schemes in classification speed by at least one order of magnitude, while having a similar storage requirement. Particularly, with different types of classifiers of 4K rules, the proposed pipeline architecture is able to achieve a throughput between 26.8 and 93.1 Gb/s using perfect hash tables.
机译:诸如网络入侵检测系统和数据包级计费之类的新网络应用程序的出现要求数据包分类报告所有匹配的规则,而不是仅报告最佳匹配的规则。尽管最近提出了几种解决多匹配数据包分类问题的方案,但大多数方案都需要巨大的内存或昂贵的三态内容可寻址存储器(TCAM)来存储中间数据结构,否则在某些类型的分类器下性能会急剧下降。在本文中,我们将多匹配包分类的操作从复杂的多维搜索分解为几个单维搜索,并提出了一种基于签名树结构的异步流水线架构,以结合从一维搜索返回的中间结果。通过将签名树的边缘分布在不同阶段的多个散列表中,流水线可以通过对散列表的级间并行访问来实现高吞吐量。为了进一步利用阶段内并行性,设计了两种边缘分组算法,以将与每个阶段关联的边缘均匀地划分为多个节省工作的哈希表。为了避免哈希表查找中涉及的冲突,提出了一种混合式完美哈希表构造方案。使用现实的分类器和流量跟踪进行的广泛仿真显示,所提出的管道体系结构在分类速度方面比HyperCuts和B2PC方案至少好一个数量级,同时具有相似的存储要求。特别是,通过使用不同类型的4K规则分类器,提出的管道体系结构能够使用完美的哈希表实现26.8到93.1 Gb / s的吞吐量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号