首页> 外文期刊>Parallel and Distributed Systems, IEEE Transactions on >Data Gathering with Compressive Sensing in Wireless Sensor Networks: A Random Walk Based Approach
【24h】

Data Gathering with Compressive Sensing in Wireless Sensor Networks: A Random Walk Based Approach

机译:无线传感器网络中具有压缩感测的数据收集:基于随机游动的方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we study the problem of data gathering with compressive sensing (CS) in wireless sensor networks (WSNs). Unlike the conventional approaches, which require uniform sampling in the traditional CS theory, we propose a random walk algorithm for data gathering in WSNs. However, such an approach will conform to path constraints in networks and result in the non-uniform selection of measurements. It is still unknown whether such a non-uniform method can be used for CS to recover sparse signals in WSNs. In this paper, from the perspectives of CS theory and graph theory, we provide mathematical foundations to allow random measurements to be collected in a random walk based manner. We find that the random matrix constructed from our random walk algorithm can satisfy the expansion property of expander graphs. The theoretical analysis shows that a -sparse signal can be recovered using minimization decoding algorithm when it takes independent random walks with the length of each walk in a random geometric network with nodes. We also carry out simulations to demonstrate the effectiveness of the proposed scheme. Simulation results show that our proposed scheme can significantly reduce communication cost compared to the conventional schemes using dense random projecti- ns and sparse random projections, indicating that our scheme can be a more practical alternative for data gathering applications in WSNs.
机译:在本文中,我们研究了无线传感器网络(WSN)中具有压缩感知(CS)的数据收集问题。与传统方法不同,传统方法需要传统CS理论中的统一采样,因此我们提出了一种随机游走算法,用于WSN中的数据收集。但是,这种方法将符合网络中的路径约束,并导致测量值的选择不一致。尚不知道这种非均匀方法是否可用于CS恢复WSN中的稀疏信号。在本文中,从CS理论和图论的角度,我们提供了数学基础,允许以基于随机游走的方式收集随机测量值。我们发现,由我们的随机游走算法构造的随机矩阵可以满足扩展器图的扩展性质。理论分析表明,在带有节点的随机几何网络中,当随机走步的长度与每次走步的长度无关时,可以使用最小化解码算法恢复稀疏信号。我们还进行了仿真,以证明所提出方案的有效性。仿真结果表明,与传统的使用密集随机投影和稀疏随机投影的方案相比,我们提出的方案可以显着降低通信成本,这表明我们的方案可以成为无线传感器网络中数据收集应用的更实用的替代方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号