首页> 外文OA文献 >A Data-Gathering Scheme with Joint Routing and Compressive Sensing Based on Modified Diffusion Wavelets in Wireless Sensor Networks
【2h】

A Data-Gathering Scheme with Joint Routing and Compressive Sensing Based on Modified Diffusion Wavelets in Wireless Sensor Networks

机译:基于无线传感器网络中修改的扩散小波的联合路由和压缩检测的数据收集方案

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Compressive sensing (CS)-based data gathering is a promising method to reduce energy consumption in wireless sensor networks (WSNs). Traditional CS-based data-gathering approaches require a large number of sensor nodes to participate in each CS measurement task, resulting in high energy consumption, and do not guarantee load balance. In this paper, we propose a sparser analysis that depends on modified diffusion wavelets, which exploit sensor readings’ spatial correlation in WSNs. In particular, a novel data-gathering scheme with joint routing and CS is presented. A modified ant colony algorithm is adopted, where next hop node selection takes a node’s residual energy and path length into consideration simultaneously. Moreover, in order to speed up the coverage rate and avoid the local optimal of the algorithm, an improved pheromone impact factor is put forward. More importantly, theoretical proof is given that the equivalent sensing matrix generated can satisfy the restricted isometric property (RIP). The simulation results demonstrate that the modified diffusion wavelets’ sparsity affects the sensor signal and has better reconstruction performance than DFT. Furthermore, our data gathering with joint routing and CS can dramatically reduce the energy consumption of WSNs, balance the load, and prolong the network lifetime in comparison to state-of-the-art CS-based methods.
机译:基于压缩感应(CS)的数据收集是减少无线传感器网络(WSN)中能耗的有希望的方法。传统的基于CS的数据收集方法需要大量的传感器节点来参与每个CS测量任务,从而产生高能耗,并且不保证负载平衡。在本文中,我们提出了一种稀疏分析,其取决于改进的扩散小波,其利用WSN中的传感器读数的空间相关性。特别地,提出了一种具有联合路由和CS的新型数据收集方案。采用修改的蚁群算法,其中下一跳节点选择同时考虑节点的剩余能量和路径长度。此外,为了加速覆盖率并避免算法的局部优化,提出了改进的信息素影响因子。更重要的是,给出了理论证据,所以产生的等效感测矩阵可以满足受限的等距特性(RIP)。仿真结果表明,修改的扩散小波的稀疏性影响传感器信号并具有比DFT更好的重建性能。此外,我们使用联合路由和CS收集的数据可以大大降低WSN的能耗,与最先进的CS的方法相比,延长了网络寿命,并延长了网络寿命。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号