首页> 外文期刊>IEEE Transactions on Systems, Man, and Cybernetics >A Kernel-Based Compressive Sensing Approach for Mobile Data Gathering in Wireless Sensor Network Systems
【24h】

A Kernel-Based Compressive Sensing Approach for Mobile Data Gathering in Wireless Sensor Network Systems

机译:无线传感器网络系统中基于核的移动数据收集压缩感知方法

获取原文
获取原文并翻译 | 示例

摘要

The recent advances of compressive sensing (CS) have witnessed a great potential of efficient compressive data gathering (CDG) in wireless sensor network systems (WSNSs). However, most existing work on CDG mainly focuses on multihop relaying strategies to improve the performance of data gathering. In this paper, we propose a mobile CDG scheme including a random walk-based algorithm and a kernel-based method for sparsifying sensory data from irregular deployments. The proposed scheme allows a mobile collector to harvest data by sequentially visiting a number of nodes along a random path. More importantly, toward building the gap between CS and machine learning theories, we explore a theoretical foundation for understanding the feasibility of the proposed scheme. We prove that the CS matrices, constructed from the proposed random walk algorithm combined with a kernel-based sparsity basis, satisfy the restricted isometry property. Particularly, we also show that m = O(klog(n/k)) measurements collected by a mobile collector are sufficient to recover a k-sparse signal and t = O(klog(n/k)) steps are required to collect these measurements in a network with n nodes. Finally, we also present extensive numerical results to validate the effectiveness of the proposed scheme by evaluating the performance in terms of energy consumption and the impact of packet losses. The numerical results demonstrate that the proposed scheme is able to not only significantly reduce communication cost but also combat unreliable wireless links under various packet losses compared to the stateof-the-art schemes, which provides an efficient alternative to data relaying approaches for CDG in WSNS.
机译:压缩感测(CS)的最新进展见证了无线传感器网络系统(WSNS)中高效压缩数据收集(CDG)的巨大潜力。但是,有关CDG的大多数现有工作主要集中在多跳中继策略上,以提高数据收集的性能。在本文中,我们提出了一种移动CDG方案,该方案包括基于随机行走的算法和基于内核的方法,用于稀疏来自不规则部署的传感数据。提出的方案允许移动收集器通过沿随机路径顺序访问多个节点来收集数据。更重要的是,为了弥合CS与机器学习理论之间的差距,我们探索了一种理论基础,以了解所提出方案的可行性。我们证明,由提出的随机游走算法结合基于核的稀疏性基础构造的CS矩阵满足受限的等距特性。特别是,我们还表明,由移动收集器收集的m = O(klog(n / k))个测量值足以恢复k个稀疏信号,并且需要t = O(klog(n / k))个步骤来收集这些信号在具有n个节点的网络中进行测量。最后,我们还提供了广泛的数值结果,通过评估能耗和数据包丢失的影响来验证所提方案的有效性。数值结果表明,与最新方案相比,该方案不仅能够显着降低通信成本,而且还可以在各种数据包丢失的情况下解决不可靠的无线链路,从而为WSNS中CDG的数据中继方法提供了有效的替代方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号