首页> 外文期刊>IEEE Transactions on Parallel and Distributed Systems >Parallel and Streaming Truth Discovery in Large-Scale Quantitative Crowdsourcing
【24h】

Parallel and Streaming Truth Discovery in Large-Scale Quantitative Crowdsourcing

机译:大规模量化众包中的并行和流式真理发现

获取原文
获取原文并翻译 | 示例

摘要

To enable reliable crowdsourcing applications, it is of great importance to develop algorithms that can automatically discover the truths from possibly noisy and conflicting claims provided by various information sources. In order to handle crowdsourcing applications involving big or streaming data, a desirable truth discovery algorithm should not only be effective, but also be scalable. However, with respect to quantitative crowdsourcing applications such as object counting and percentage annotation, existing truth discovery algorithms are not simultaneously effective and scalable. They either address truth discovery in categorical crowdsourcing or perform batch processing that does not scale. In this paper, we propose new parallel and streaming truth discovery algorithms for quantitative crowdsourcing applications. Through extensive experiments on real-world and synthetic datasets, we demonstrate that 1) both of them are quite effective, 2) the parallel algorithm can efficiently perform truth discovery on large datasets, and 3) the streaming algorithm processes data incrementally, and it can efficiently perform truth discovery both on large datasets and in data streams.
机译:为了实现可靠的众包应用,开发能够自动从各种信息源提供的可能嘈杂和冲突的声明中发现真相的算法至关重要。为了处理涉及大数据或流数据的众包应用,理想的真相发现算法不仅应有效,而且应具有可扩展性。然而,对于诸如对象计数和百分比注释之类的定量众包应用,现有的真相发现算法不能同时有效和​​可扩展。他们要么解决分类众包中的真相发现,要么执行无法扩展的批处理。在本文中,我们为定量众包应用提出了新的并行和流式真相发现算法。通过对真实数据集和合成数据集进行的大量实验,我们证明了1)两者都非常有效,2)并行算法可以有效地对大型数据集执行真值发现,并且3)流算法逐步处理数据,并且可以在大型数据集和数据流中高效地执行真相发现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号