首页> 外文期刊>IEEE Transactions on Parallel and Distributed Systems >An Efficient Privacy-Preserving Ranked Keyword Search Method
【24h】

An Efficient Privacy-Preserving Ranked Keyword Search Method

机译:一种高效的隐私保护排名关键词搜索方法

获取原文
获取原文并翻译 | 示例

摘要

Cloud data owners prefer to outsource documents in an encrypted form for the purpose of privacy preserving. Therefore it is essential to develop efficient and reliable ciphertext search techniques. One challenge is that the relationship between documents will be normally concealed in the process of encryption, which will lead to significant search accuracy performance degradation. Also the volume of data in data centers has experienced a dramatic growth. This will make it even more challenging to design ciphertext search schemes that can provide efficient and reliable online information retrieval on large volume of encrypted data. In this paper, a hierarchical clustering method is proposed to support more search semantics and also to meet the demand for fast ciphertext search within a big data environment. The proposed hierarchical approach clusters the documents based on the minimum relevance threshold, and then partitions the resulting clusters into sub-clusters until the constraint on the maximum size of cluster is reached. In the search phase, this approach can reach a linear computational complexity against an exponential size increase of document collection. In order to verify the authenticity of search results, a structure called minimum hash sub-tree is designed in this paper. Experiments have been conducted using the collection set built from the IEEE Xplore. The results show that with a sharp increase of documents in the dataset the search time of the proposed method increases linearly whereas the search time of the traditional method increases exponentially. Furthermore, the proposed method has an advantage over the traditional method in the rank privacy and relevance of retrieved documents.
机译:云数据所有者更喜欢以加密形式外包文档,以保护隐私。因此,开发有效且可靠的密文搜索技术至关重要。一个挑战是,文档之间的关系通常会在加密过程中被隐藏,这将导致搜索精度性能显着下降。此外,数据中心的数据量也经历了巨大的增长。这将使设计密文搜索方案变得更具挑战性,该方案可以在大量加密数据上提供有效而可靠的在线信息检索。本文提出了一种层次聚类的方法,以支持更多的搜索语义,并满足大数据环境下快速密文搜索的需求。所提出的分层方法基于最小相关性阈值对文档进行聚类,然后将生成的聚类划分为子聚类,直到达到对最大聚类大小的约束为止。在搜索阶段,此方法可以针对文档收集的指数大小增长达到线性计算复杂度。为了验证搜索结果的真实性,本文设计了一种称为最小哈希子树的结构。使用从IEEE Xplore构建的收集集进行了实验。结果表明,随着数据集中文档数量的急剧增加,该方法的搜索时间呈线性增长,而传统方法的搜索时间呈指数增长。此外,所提出的方法在等级隐私和检索文档的相关性方面比传统方法具有优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号