首页> 外文期刊>IEEE Transactions on Parallel and Distributed Systems >Reducing the Impact of Intensive Dynamic Memory Allocations in Parallel Multi-Threaded Programs
【24h】

Reducing the Impact of Intensive Dynamic Memory Allocations in Parallel Multi-Threaded Programs

机译:减少并行多线程程序中密集动态内存分配的影响

获取原文
获取原文并翻译 | 示例

摘要

Frequent dynamic memory allocations (DyMAs) can significantly hinder the scalability of parallel multi-threaded programs. As the number of threads grows, DyMAs can even become the main performance bottleneck. We introduce modern tools and methods for evaluating the impact of DyMAs and present techniques for its reduction, which include scalable heap implementations, small buffer optimization, and memory pooling. Additionally, we provide a survey of state-of-the-art implementations of these techniques and study them experimentally by using a benchmark program, server simulator software, and a real-world high-performance computing application. As a result, we show that relatively small modifications in parallel program's source code or a way of its execution may substantially reduce the runtime overhead associated with the use of dynamic data structures.
机译:频繁的动态内存分配(DyMA)可能会严重阻碍并行多线程程序的可伸缩性。随着线程数量的增加,DyMA甚至可能成为主要的性能瓶颈。我们介绍了用于评估DyMA的影响的现代工具和方法,并介绍了减少它的技术,其中包括可伸缩堆实现,小型缓冲区优化和内存池。此外,我们提供了对这些技术的最新实现的调查,并通过使用基准程序,服务器模拟器软件和实际的高性能计算应用程序进行了实验研究。结果,我们表明,对并行程序的源代码进行较小的修改或其执行方式可以大大减少与使用动态数据结构相关的运行时开销。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号