首页> 外文期刊>IEEE Transactions on Parallel and Distributed Systems >Effectively utilizing global cluster memory for large data-intensive parallel programs
【24h】

Effectively utilizing global cluster memory for large data-intensive parallel programs

机译:有效地将全局群集内存用于大型数据密集型并行程序

获取原文
获取原文并翻译 | 示例

摘要

Large scientific parallel applications demand large amounts of memory space. Current parallel computing platforms schedule jobs without fully knowing their memory requirements. This leads to uneven memory allocation in which some nodes are overloaded. This, in turn, leads to disk paging, which is extremely expensive in the context of scientific parallel computing. To solve this problem, we propose a new peer-to-peer solution called parallel network RAM. This approach avoids the use of disk, better utilizes available RAM resources, and will allow larger problems to be solved while reducing the computational, communication, and synchronization overhead typically involved in parallel applications. We proposed several different parallel network RAM designs and evaluated the performance of each under different conditions. We discovered that different designs are appropriate in different situations.
机译:大型科学并行应用程序需要大量的存储空间。当前的并行计算平台在不完全了解其内存需求的情况下调度作业。这导致内存分配不均,其中某些节点过载。反过来,这导致磁盘分页,这在科学并行计算的情况下非常昂贵。为了解决这个问题,我们提出了一种新的对等解决方案,称为并行网络RAM。这种方法避免了磁盘的使用,更好地利用了可用的RAM资源,并且可以解决更大的问题,同时减少了并行应用程序中通常涉及的计算,通信和同步开销。我们提出了几种不同的并行网络RAM设计,并评估了在不同条件下每种性能。我们发现不同的设计适用于不同的情况。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号