首页> 外文期刊>Computational Optimization and Applications >Self-adaptive inexact proximal point methods
【24h】

Self-adaptive inexact proximal point methods

机译:自适应不精确近点法

获取原文
获取原文并翻译 | 示例

摘要

We propose a class of self-adaptive proximal point methods suitable for degenerate optimization problems where multiple minimizers may exist, or where the Hessian may be singular at a local minimizer. If the proximal regularization parameter has the form $mu({bf{x}})=beta|nabla f({bf{x}})|^{eta}$ where η∈[0,2) and β>0 is a constant, we obtain convergence to the set of minimizers that is linear for η=0 and β sufficiently small, superlinear for η∈(0,1), and at least quadratic for η∈[1,2). Two different acceptance criteria for an approximate solution to the proximal problem are analyzed. These criteria are expressed in terms of the gradient of the proximal function, the gradient of the original function, and the iteration difference. With either acceptance criterion, the convergence results are analogous to those of the exact iterates. Preliminary numerical results are presented using some ill-conditioned CUTE test problems.
机译:我们提出了一类自适应近端方法,适用于可能存在多个最小化子或在局部最小化子中Hessian奇异的简并优化问题。如果近端正则化参数的形式为$ mu({bf {x}})= beta | nabla f({bf {x}})| ^ {eta} $,其中η∈[0,2)和β> 0为一个常数,我们获得对极小子集的收敛,当η= 0且β足够小时,对于ε∈(0,1)超线性,对于η∈[1,2)至少平方。分析了针对近端问题的近似解决方案的两种不同的接受标准。这些标准用近端函数的梯度,原始函数的梯度和迭代差表示。无论采用哪种接受标准,收敛结果都与精确迭代的结果相似。使用一些病态的CUTE测试问题给出了初步的数值结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号