首页> 外文期刊>Optimization Methods and Software >Efficient evolutionary approach to approximate the Pareto-optimal set in multiobjective optimization, UPS-EMOA
【24h】

Efficient evolutionary approach to approximate the Pareto-optimal set in multiobjective optimization, UPS-EMOA

机译:在多目标优化中有效的进化方法逼近帕累托最优集,UPS-EMOA

获取原文
获取原文并翻译 | 示例

摘要

Solving real-life engineering problems requires often multiobjective, global, and efficient (in terms of objective function evaluations) treatment. In this study, we consider problems of this type by discussing some drawbacks of the current methods and then introduce a new population-based multiobjective optimization algorithm UPS-EMOA which produces a dense (not limited to the population size) approximation of the Pareto-optimal set in a computationally effective manner.View full textDownload full textKeywordsefficient Pareto-optimal set approximation, multicriteria optimization, population-based approaches, Pareto-optimality, non-dominance, EMORelated var addthis_config = { ui_cobrand: "Taylor & Francis Online", services_compact: "citeulike,netvibes,twitter,technorati,delicious,linkedin,facebook,stumbleupon,digg,google,more", pubid: "ra-4dff56cd6bb1830b" }; Add to shortlist Link Permalink http://dx.doi.org/10.1080/10556780903548265
机译:解决现实生活中的工程问题通常需要多目标,全局和有效的(就目标函数评估而言)处理。在这项研究中,我们通过讨论当前方法的一些弊端来考虑此类问题,然后介绍一种新的基于种群的多目标优化算法UPS-EMOA,该算法可产生帕累托最优的密集(但不限于种群大小)近似值查看全文下载全文全文关键字有效的帕累托最优集逼近,多准则优化,基于人群的方法,帕累托最优,非优势,EMORelated var addthis_config = {ui_cobrand:“ Taylor&Francis Online”,services_compact: “ citeulike,netvibes,twitter,technorati,美味,linkedin,facebook,stumbleupon,digg,google,更多”,发布:“ ra-4dff56cd6bb1830b”};添加到候选列表链接永久链接http://dx.doi.org/10.1080/10556780903548265

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号