首页> 外文期刊>Evolutionary Computation, IEEE Transactions on >An Efficient Approach to Nondominated Sorting for Evolutionary Multiobjective Optimization
【24h】

An Efficient Approach to Nondominated Sorting for Evolutionary Multiobjective Optimization

机译:进化多目标优化的一种非支配排序的有效方法

获取原文
获取原文并翻译 | 示例

摘要

Evolutionary algorithms have been shown to be powerful for solving multiobjective optimization problems, in which nondominated sorting is a widely adopted technique in selection. This technique, however, can be computationally expensive, especially when the number of individuals in the population becomes large. This is mainly because in most existing nondominated sorting algorithms, a solution needs to be compared with all other solutions before it can be assigned to a front. In this paper we propose a novel, computationally efficient approach to nondominated sorting, termed efficient nondominated sort (ENS). In ENS, a solution to be assigned to a front needs to be compared only with those that have already been assigned to a front, thereby avoiding many unnecessary dominance comparisons. Based on this new approach, two nondominated sorting algorithms have been suggested. Both theoretical analysis and empirical results show that the ENS-based sorting algorithms are computationally more efficient than the state-of-the-art nondominated sorting methods.
机译:进化算法已显示出解决多目标优化问题的强大功能,其中非支配排序是选择中广泛采用的技术。但是,此技术可能在计算上昂贵,尤其是当人口中的个体数量变大时。这主要是因为在大多数现有的非支配排序算法中,必须先将一个解决方案与所有其他解决方案进行比较,然后才能将其分配给前端。在本文中,我们提出了一种新颖的,计算有效的非支配排序方法,称为有效非支配排序(ENS)。在ENS中,只需将分配给前端的解决方案与已经分配给前端的解决方案进行比较,从而避免了许多不必要的优势比较。基于这种新方法,提出了两种非支配的排序算法。理论分析和实证结果均表明,基于ENS的排序算法在计算效率上高于最新的非支配排序方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号