首页> 外文期刊>Evolutionary Computation, IEEE Transactions on >An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point Based Nondominated Sorting Approach, Part II: Handling Constraints and Extending to an Adaptive Approach
【24h】

An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point Based Nondominated Sorting Approach, Part II: Handling Constraints and Extending to an Adaptive Approach

机译:一种基于参考点的非支配排序方法的进化多目标优化算法,第二部分:处理约束并扩展为自适应方法

获取原文
获取原文并翻译 | 示例

摘要

In the precursor paper, a many-objective optimization method (NSGA-III), based on the NSGA-II framework, was suggested and applied to a number of unconstrained test and practical problems with box constraints alone. In this paper, we extend NSGA-III to solve generic constrained many-objective optimization problems. In the process, we also suggest three types of constrained test problems that are scalable to any number of objectives and provide different types of challenges to a many-objective optimizer. A previously suggested MOEA/D algorithm is also extended to solve constrained problems. Results using constrained NSGA-III and constrained MOEA/D show an edge of the former, particularly in solving problems with a large number of objectives. Furthermore, the NSGA-III algorithm is made adaptive in updating and including new reference points on the fly. The resulting adaptive NSGA-III is shown to provide a denser representation of the Pareto-optimal front, compared to the original NSGA-III with an identical computational effort. This, and the original NSGA-III paper, together suggest and amply test a viable evolutionary many-objective optimization algorithm for handling constrained and unconstrained problems. These studies should encourage researchers to use and pay further attention in evolutionary many-objective optimization.
机译:在前一篇论文中,提出了一种基于NSGA-II框架的多目标优化方法(NSGA-III),并将其应用于仅具有盒约束的许多无约束测试和实际问题。在本文中,我们扩展了NSGA-III来解决通用约束的多目标优化问题。在此过程中,我们还建议了三种类型的约束测试问题,它们可以扩展到任意数量的目标,并为多目标优化器提供不同类型的挑战。先前提出的MOEA / D算法也被扩展来解决约束问题。使用受约束的NSGA-III和受约束的MOEA / D的结果显示了前者的优势,特别是在解决具有大量目标的问题时。此外,NSGA-III算法可以自适应地更新和动态添加新的参考点。结果表明,与原始NSGA-III相比,具有相同计算量的自适应NSGA-III提供了帕累托最优前沿的密集表示。这和原始的NSGA-III论文一起提出并充分测试了一种可行的进化多目标优化算法,用于处理受约束和不受约束的问题。这些研究应鼓励研究人员在进化多目标优化中使用并给予进一步关注。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号