首页> 外文期刊>Optimization Methods and Software >An active-set trust-region method for derivative-free nonlinear bound-constrained optimization
【24h】

An active-set trust-region method for derivative-free nonlinear bound-constrained optimization

机译:一种无导数非线性有界约束优化的有效集信赖域方法

获取原文
获取原文并翻译 | 示例

摘要

We consider an implementation of a recursive model-based active-set trust-region method for solving bound-constrained nonlinear non-convex optimization problems without derivatives using the technique of self-correcting geometry proposed in K. Scheinberg and Ph.L. Toint [Self-correcting geometry in model-based algorithms for derivative-free unconstrained optimization. SIAM Journal on Optimization, (to appear), 2010]. Considering an active-set method in bound-constrained model-based optimization creates the opportunity of saving a substantial amount of function evaluations. It allows US to maintain much smaller interpolation sets while proceeding optimization in lower-dimensional subspaces. The resulting algorithm is shown to be numerically competitive.View full textDownload full textKeywordsderivative-free optimization, bound constraints, nonlinear optimization, active-set methods, trust region, numerical experimentsRelated var addthis_config = { ui_cobrand: "Taylor & Francis Online", services_compact: "citeulike,netvibes,twitter,technorati,delicious,linkedin,facebook,stumbleupon,digg,google,more", pubid: "ra-4dff56cd6bb1830b" }; Add to shortlist Link Permalink http://dx.doi.org/10.1080/10556788.2010.549231
机译:我们考虑使用基于递归模型的主动集信任域方法的实现,该方法使用K. Scheinberg和Ph.L.提出的自校正几何技术来解决无导数的约束约束非线性非凸优化问题。 [基于模型的算法中的自校正几何用于无导数无约束优化。 SIAM优化杂志,(即将出版),2010年]。在基于约束约束的模型优化中考虑采用主动集方法可以节省大量的函数评估。它允许US在进行低维子空间优化时保持较小的插值集。结果算法显示出在数值上具有竞争力。查看全文下载全文关键字无导数优化,边界约束,非线性优化,有效集方法,信任区域,数值实验相关的var addthis_config = {ui_cobrand:“泰勒和弗朗西斯在线”,services_compact: “ citeulike,netvibes,twitter,technorati,美味,linkedin,facebook,stumbleupon,digg,google,更多”,发布:“ ra-4dff56cd6bb1830b”};添加到候选列表链接永久链接http://dx.doi.org/10.1080/10556788.2010.549231

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号