首页> 外文期刊>Optical Switching and Networking >De-multiplexing the required spectrum in a traffic demand into multiple non-adjacent granular spectrums for dynamic traffic grooming in EON
【24h】

De-multiplexing the required spectrum in a traffic demand into multiple non-adjacent granular spectrums for dynamic traffic grooming in EON

机译:将业务需求中的所需频谱解复用入EON中的动态流量的多个非相邻粒状谱

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

An elastic light-trail, the advanced version of a traditional light-trail, is one of the most recent dynamic traffic grooming technologies in an elastic optical network. In such networks, Orthogonal Frequency Division Multiplexing (OFDM) is a promising technology to execute the RSA (routing and spectrum assignment) algorithm and implement an elastic light-trail as a result. However, the reconfigurable optical add-drop multiplexers (ROADMs) and bandwidth variable Wavelength Selective Switches (WSSs) are required to implement an optically switched and spectrum varying elastic lightpath. In addition to the hardware equipment mentioned above, Add Drop Couplers (ADC) and optical ON/OFF switches (OS) are required to facilitate elastic light-trail in an elastic optical network. Hereafter, deployment of Add Drop Couplers (ADC) and optical ON/OFF switches incurs a significant network cost to facilitate elastic light-trail implementation. Toward the approach for eliminating this costly hardware setup, we have highlighted the fragmentation problem that occurs in spectrum domain in an optical fiber link. In this problem, the entire spectrum range in an elastic optical link is fragmented into several non-contiguous free spectrum slots at an instance during a data transportation session. In this regard, we have proposed "Multiple multi-hop non-contiguous elastic lightpath - MMNCEL" algorithm, where the required spectrum B of a traffic demand r(s, d, B, T) is sliced into n distinct granular spectrums {b(1), b(2), . . . b(n)} according to the current availability and status of fragmented spectrum slots in an elastic optical link. Moreover, to setup an elastic lightpath, the algorithm allocates the same range of spectrum from every optical link in a route to preserve Spectrum Continuity Constraint (SCC), whereas, at each hop in a multi-hop elastic lightpath the algorithm performs opto-electrical conversion. In this paper, our objective is to achieve maximum network throughput in an elastic optical network without deploying ADC and optical ON/OFF switches. However, in this work, we have investigated optical spectrum utilization efficiency for the proposed MMNCEL, existing elastic light-trail (Multi-hop Elastic Light-trail algorithm - MELT) and elastic lightpath (Multi-hop elastic Lightpath algorithm MEL), and performed comparison measurements preciously.
机译:弹性轻轨,传统轻轨的先进版本是弹性光网络中最近的动态流量美容技术之一。在这种网络中,正交频分复用(OFDM)是执行RSA(路由和频谱分配)算法的有希望的技术,并因此实现弹性光路。然而,需要可重新配置的光学添加多路复用器(ROADMS)和带宽变量波长选择性开关(WSSS)来实现光学切换和频谱变化的弹性光路。除了上述硬件设备之外,还需要添加丢弃耦合器(ADC)和光学开/关开关(OS)以便于弹性光网络中的弹性光路。此后,ADD DROP耦合器(ADC)和光学开/关开关的部署会引发大量网络成本,以便于弹性光线实现。朝着消除这一昂贵的硬件设置的方法,我们突出了光纤链路中的频谱域中发生的碎片问题。在该问题中,弹性光学链路中的整个光谱范围在数据运输会话期间将弹性光学链路中的整个光谱范围分段为若干非连续的自由谱槽。在这方面,我们已经提出了“多跳非连续弹性光路 - MMNCEL”算法,其中交通需求R(S,D,B,T)的所需频谱B切成N个不同的粒度频谱{B. (1),B(2),。 。 。 B(n)}根据弹性光学链路中的分段频谱槽的当前可用性和状态。此外,为了设置弹性光路,该算法在路线中分配相同范围的频谱范围,以保持频谱连续性约束(SCC),而在多跳弹性光路中的每跳时,算法执行光电电气转换。在本文中,我们的目的是在弹性光网络中实现最大的网络吞吐量,而无需部署ADC和光学开/关开关。但是,在这项工作中,我们对所提出的MMNCEL,现有的弹性轻轨(多跳弹性轻轨算法 - 熔体)和弹性光路(Multi-Hop Elastic LightPath算法MEL)进行了研究的光谱利用效率。比较测量的精确测量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号