首页> 外文期刊>Optical memory & neural networks >New Neural Network Technique to the Numerical Solution of Mathematical Physics Problems. II: Complicated and Nonstandard Problems
【24h】

New Neural Network Technique to the Numerical Solution of Mathematical Physics Problems. II: Complicated and Nonstandard Problems

机译:一种新的神经网络技术,用于数学物理问题的数值解。 II:复杂和非标准问题

获取原文
获取原文并翻译 | 示例

摘要

Neural networks are considered to be the new universal approach to the construction of mathematical models of systems with distributed parameters. These networks allow us to effectively find the approximate solutions of initial and boundary problems for partial differential equations and to take nonlinear effects and coefficient perturbations into account. Neural networks of known and new architecture are applied to the solution of Laplace, Helmholtz, and Schrodinger; heat conduction equations in domains with the fixed, free and controlled boundaries; and original training algorithms of these networks are given. This paper is composed of two parts. Part 2 deals with more complicated and nonstandard problems.
机译:神经网络被认为是构建具有分布参数的系统数学模型的新通用方法。这些网络使我们能够有效地找到偏微分方程的初始和边界问题的近似解,并考虑非线性效应和系数扰动。已知和新架构的神经网络被应用于Laplace,Helmholtz和Schrodinger的解决方案。具有固定,自由和受控边界的区域中的热传导方程;给出了这些网络的原始训练算法。本文由两部分组成。第2部分处理更复杂和非标准的问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号