首页> 外文期刊>Optical Engineering >Computation-aware algorithm selection approach for interlaced-to-progressive conversion
【24h】

Computation-aware algorithm selection approach for interlaced-to-progressive conversion

机译:隔行到渐进转换的计算感知算法选择方法

获取原文
获取原文并翻译 | 示例

摘要

We discuss deinterlacing results in a computationally constrainednand varied environment. The proposed computation-aware algorithmnselection approach u0001CASAu0002 for fast interlaced to progressivenconversion algorithm consists of three methods: the line-averaging u0001LAu0002nmethod for plain regions, the modified edge-based line-averagingnu0001MELAu0002 method for medium regions, and the proposed covariancebasednadaptive deinterlacing u0001CADu0002 method for complex regions. Thenproposed CASA uses two criteria, mean-squared error u0001MSEu0002 and CPUntime, for assigning the method. We proposed a CAD method. The principlenidea of CAD is based on the correspondence between the high andnlow-resolution covariances. We estimated the local covariance coefficientsnfrom an interlaced image using Wiener filtering theory and thennused these optimal minimum MSE interpolation coefficients to obtain andeinterlaced image. The CAD method, though more robust than mostnknown methods, was not found to be very fast compared to the others.nTo alleviate this issue, we proposed an adaptive selection approach usingna fast deinterlacing algorithm rather than using only one CAD algorithm.nThe proposed hybrid approach of switching between the conventionalnschemes u0001LA and MELAu0002 and our CAD was proposed to reducenthe overall computational load. A reliable condition to be used for switchingnthe schemes was presented after a wide set of initial training processes.nThe results of computer simulations showed that the proposednmethods outperformed a number of methods presented in thenliterature.
机译:我们讨论了在计算受限和变化的环境中的去隔行结果。所提出的用于快速隔行到逐行逐行转换算法的计算感知算法n选择方法u0001CASAu0002包括三种方法:针对平原区域的线平均u0001LAu0002n方法,针对中等区域的基于边线的改进修正线平均nu0001MELAu0002方法以及针对复杂区域的基于协方差的自适应去隔行u0001CADu0002方法地区。然后,建议的CASA使用两个标准,均方误差u0001MSEu0002和CPUntime来分配方法。我们提出了一种CAD方法。 CAD的原理基于高分辨率和低分辨率协方差之间的对应关系。我们使用维纳滤波理论从隔行图像中估计局部协方差系数n,然后对这些最佳最小MSE插值系数进行处理,以获得隔行图像。 CAD方法虽然比大多数已知方法更健壮,但与其他方法相比并没有很快.n为了缓解这个问题,我们提出了一种使用快速去隔行算法而不是仅使用一种CAD算法的自适应选择方法。在传统的化学方法u0001LA和MELAu0002之间进行切换以及我们的CAD被提出来减少总体计算负荷。经过一系列初始训练过程,提出了切换方案的可靠条件。计算机仿真结果表明,所提出的方法要优于文献中提出的许多方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号