首页> 外文期刊>Optical engineering >Empirical mode decomposition-based facial pose estimation inside video sequences
【24h】

Empirical mode decomposition-based facial pose estimation inside video sequences

机译:视频序列内部基于经验模式分解的面部姿势估计

获取原文
获取原文并翻译 | 示例

摘要

We describe a new pose-estimation algorithm via integration of the strength in both empirical mode decomposition (EMD) and mutual information. While mutual information is exploited to measure the similarity between facial images to estimate poses, EMD is exploited to decompose input facial images into a number of intrinsic mode function (IMF) components, which redistribute the effect of noise, expression changes, and illumination variations as such that, when the input facial image is described by the selected IMF components, all the negative effects can be minimized. Extensive experiments were carried out in comparisons to existing representative techniques, and the results show that the proposed algorithm achieves better pose-estimation performances with robustness to noise corruption, illumination variation, and facial expressions.
机译:我们通过经验模式分解(EMD)和互信息的强度的集成描述了一种新的姿态估计算法。利用互信息来测量面部图像之间的相似度以估计姿势,而利用EMD将输入的面部图像分解为许多固有模式函数(IMF)分量,从而将噪声,表情变化和照明变化的影响重新分配为这样,当输入的面部图像由选定的IMF组件描述时,所有负面影响都可以降到最低。与现有的代表性技术进行了广泛的实验,结果表明,该算法具有较好的姿态估计性能,并且对噪声破坏,光照变化和面部表情具有鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号