首页> 外文期刊>Numerische Mathematik >A posteriori error estimate for finite volume approximations to singularly perturbed nonlinear convection-diffusion equations
【24h】

A posteriori error estimate for finite volume approximations to singularly perturbed nonlinear convection-diffusion equations

机译:奇异摄动非线性对流扩散方程的有限体积近似的后验误差估计

获取原文
获取原文并翻译 | 示例

摘要

This paper is devoted to the study of a posteriori and a priori error estimates for the scalar nonlinear convection diffusion equation $c_t + nabla cdot ( u f(c)) - varepsilon Delta c = 0$ . The estimates for the error between the exact solution and an upwind finite volume approximation to the solution are derived in the $L^1$ -norm in the situation, where the diffusion parameter $varepsilon$ is smaller or comparable to the mesh size. Numerical experiments underline the theoretical results.
机译:本文致力于标量非线性对流扩散方程$ c_t + nabla cdot(u f(c))-varepsilon Delta c = 0 $的后验和先验误差估计。在扩散参数$ varepsilon $较小或与网格大小相当的情况下,通过$ L ^ 1 $范数,可以得出精确解与逆风有限解之间的误差估计。数值实验强调了理论结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号