首页> 外文期刊>Numerical Functional Analysis and Optimization >Convergence Rate of Galerkin Method for a Certain Class of Nonlinear Operator-Differential Equations
【24h】

Convergence Rate of Galerkin Method for a Certain Class of Nonlinear Operator-Differential Equations

机译:一类非线性算子-微分方程的Galerkin方法的收敛速度

获取原文
获取原文并翻译 | 示例

摘要

In this article, we study a Galerkin method for a nonstationary operator equation with a leading self-adjoint operator A(t) and a subordinate nonlinear operator F. The existence of the strong solutions of the Cauchy problem for differential and approximate equations are proved. New error estimates for the approximate solutions and their derivatives are obtained. The developed method is applied to an initial boundary value problem for a partial differential equation of parabolic type.
机译:在本文中,我们研究了带有前导自伴随算子A(t)和从属非线性算子F的非平稳算子方程的Galerkin方法。证明了柯西问题对于微分方程和逼近方程的强解的存在性。获得了近似解及其导数的新误差估计。将该方法应用于抛物型偏微分方程的初边值问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号