首页> 外文期刊>Numerical Algorithms >A wavelet-based nested iteration–inexact conjugate gradient algorithm for adaptively solving elliptic PDEs
【24h】

A wavelet-based nested iteration–inexact conjugate gradient algorithm for adaptively solving elliptic PDEs

机译:基于小波的嵌套迭代-不精确共轭梯度算法自适应求解椭圆形偏微分方程

获取原文
获取原文并翻译 | 示例

摘要

In Cohen et al. (Math Comput 70:27–75, 2001), a new paradigm for the adaptive solution of linear elliptic partial differential equations (PDEs) was proposed, based on wavelet discretizations. Starting from a well-conditioned representation of the linear operator equation in infinite wavelet coordinates, one performs perturbed gradient iterations involving approximate matrix–vector multiplications of finite portions of the operator. In a bootstrap-type fashion, increasingly smaller tolerances guarantee convergence of the adaptive method. In addition, coarsening performed on the iterates allow one to prove asymptotically optimal complexity results when compared to the wavelet best N-term approximation. In the present paper, we study adaptive wavelet schemes for symmetric operators employing inexact conjugate gradient routines. Inspired by fast schemes on uniform grids, we incorporate coarsening and the adaptive application of the elliptic operator into a nested iteration algorithm. Our numerical results demonstrate that the runtime of the algorithm is linear in the number of unknowns and substantial savings in memory can be achieved in two and three space dimensions.
机译:在科恩等。 (Math Comput 70:27-75,2001),提出了一种基于小波离散化的线性椭圆偏微分方程(PDE)自适应解的新范例。从无限小波坐标中线性算子方程的状态良好表示开始,执行扰动的梯度迭代,涉及算子有限部分的近似矩阵-矢量乘法。以自举类型的方式,越来越小的公差可以保证自适应方法的收敛。此外,与小波最佳N项近似相比,对迭代进行的粗化可以证明渐近最佳复杂性结果。在本文中,我们研究了采用不精确共轭梯度例程的对称算子的自适应小波方案。受统一网格上快速方案的启发,我们将粗化和椭圆算子的自适应应用合并到嵌套迭代算法中。我们的数值结果表明,该算法的运行时间在未知数方面是线性的,并且可以在两个和三个空间维度上实现大量的内存节省。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号