首页> 外文期刊>Numerical Algorithms >A fast method to block-diagonalize a Hankel matrix
【24h】

A fast method to block-diagonalize a Hankel matrix

机译:一种将Hankel矩阵块对角线化的快速方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we consider an approximate block diagonalization algorithm of an n×n real Hankel matrix in which the successive transformation matrices are upper triangular Toeplitz matrices, and propose a new fast approach to compute the factorization in O(n 2) operations. This method consists on using the revised Bini method (Lin et al., Theor Comp Sci 315: 511–523, 2004). To motivate our approach, we also propose an approximate factorization variant of the customary fast method based on Schur complementation adapted to the n×n real Hankel matrix. All algorithms have been implemented in Matlab and numerical results are included to illustrate the effectiveness of our approach.
机译:本文考虑了一个n×n实Hankel矩阵的近似块对角化算法,其中连续变换矩阵为上三角Toeplitz矩阵,并提出了一种新的快速方法来计算O(n 2 )操作。该方法包括使用修订的Bini方法(Lin等人,Theor Comp Sci 315:511–523,2004)。为了激发我们的方法,我们还提出了一种基于Schur补码的惯常快速方法的近似因式分解变体,适用于n×n实Hankel矩阵。所有算法均已在Matlab中实现,并包含数值结果以说明我们方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号