首页> 外文期刊>Numerical Algorithms >Symplectic exponentially-fitted four-stage Runge–Kutta methods of the Gauss type
【24h】

Symplectic exponentially-fitted four-stage Runge–Kutta methods of the Gauss type

机译:高斯型辛指数拟合四阶段Runge-Kutta方法

获取原文
获取原文并翻译 | 示例

摘要

The construction of symmetric and symplectic exponentially-fitted Runge–Kutta methods for the numerical integration of Hamiltonian systems with oscillatory solutions deserves a lot of interest. In previous papers fourth-order and sixth-order symplectic exponentially-fitted integrators of Gauss type, either with fixed or variable nodes, have been derived. In this paper new such integrators of eighth-order are studied and constructed by making use of the six-step procedure of Ixaru and Vanden Berghe (2004). Numerical experiments for some oscillatory problems are presented.
机译:具有振动解的哈密顿系统数值积分的对称和辛指数拟合的龙格-库塔方法的构造值得关注。在以前的论文中,推导了具有固定或可变节点的高斯型四阶和六阶辛指数拟合的积分器。本文利用Ixaru和Vanden Berghe(2004)的六步法研究和构造了这种新的八阶积分器。提出了一些振动问题的数值实验。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号