首页> 外文期刊>Numerical Algorithms >Error-free transformations of matrix multiplication by using fast routines of matrix multiplication and its applications
【24h】

Error-free transformations of matrix multiplication by using fast routines of matrix multiplication and its applications

机译:使用矩阵乘法的快速例程进行矩阵乘法的无错误转换及其应用

获取原文
获取原文并翻译 | 示例

摘要

This paper is concerned with accurate matrix multiplication in floating-point arithmetic. Recently, an accurate summation algorithm was developed by Rump et al. (SIAM J Sci Comput 31(1):189–224, 2008). The key technique of their method is a fast error-free splitting of floating-point numbers. Using this technique, we first develop an error-free transformation of a product of two floating-point matrices into a sum of floating-point matrices. Next, we partially apply this error-free transformation and develop an algorithm which aims to output an accurate approximation of the matrix product. In addition, an a priori error estimate is given. It is a characteristic of the proposed method that in terms of computation as well as in terms of memory consumption, the dominant part of our algorithm is constituted by ordinary floating-point matrix multiplications. The routine for matrix multiplication is highly optimized using BLAS, so that our algorithms show a good computational performance. Although our algorithms require a significant amount of working memory, they are significantly faster than ‘gemmx’ in XBLAS when all sizes of matrices are large enough to realize nearly peak performance of ‘gemm’. Numerical examples illustrate the efficiency of the proposed method.
机译:本文涉及浮点运算中的精确矩阵乘法。最近,Rump等人开发了一种精确的求和算法。 (SIAM J Sci Comput 31(1):189–224,2008年)。他们方法的关键技术是快速无差错地分解浮点数。使用这种技术,我们首先开发了将两个浮点矩阵的乘积转换为浮点矩阵之和的无错误转换。接下来,我们部分地应用这种无误差的变换并开发一种算法,旨在输出矩阵乘积的精确近似值。另外,给出先验误差估计。所提方法的一个特点是,无论是在计算还是在内存消耗方面,我们算法的主要部分都是由普通的浮点矩阵乘法构成的。使用BLAS对矩阵乘法的例程进行了高度优化,因此我们的算法显示出良好的计算性能。尽管我们的算法需要大量的工作内存,但是当所有尺寸的矩阵都足够大以实现“ gemm”的几乎峰值性能时,它们比XBLAS中的“ gemmx”要快得多。数值算例说明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号