首页> 外文期刊>Numerical Algorithms >Discrete-time ZD, GD and NI for solving nonlinear time-varying equations
【24h】

Discrete-time ZD, GD and NI for solving nonlinear time-varying equations

机译:离散时间ZD,GD和NI用于求解非线性时变方程

获取原文
获取原文并翻译 | 示例

摘要

A special class of neural dynamics called Zhang dynamics (ZD), which is different from gradient dynamics (GD), has recently been proposed, generalized, and investigated for solving time-varying problems by following Zhang et al.’s design method. In view of potential digital hardware implemetation, discrete-time ZD (DTZD) models are proposed and investigated in this paper for solving nonlinear time-varying equations in the form of (f(x,t)=0). For comparative purposes, the discrete-time GD (DTGD) model and Newton iteration (NI) are also presented for solving such nonlinear time-varying equations. Numerical examples and results demonstrate the efficacy and superiority of the proposed DTZD models for solving nonlinear time-varying equations, as compared with the DTGD model and NI.
机译:与梯度动力学(GD)不同的一种特殊的神经动力学类称为张动力学(ZD),最近已经按照章等人的设计方法提出,归纳和研究,以解决时变问题。鉴于潜在的数字硬件实现,本文提出并研究了离散时间ZD(DTZD)模型,以求解(f(x,t)= 0)形式的非线性时变方程。为了进行比较,还提出了离散时间GD(DTGD)模型和牛顿迭代(NI)来求解此类非线性时变方程。数值算例和结果表明,与DTGD模型和NI相比,提出的DTZD模型解决非线性时变方程的有效性和优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号