首页> 外文期刊>Numerical Algorithms >Compact finite difference scheme for the solution of time fractional advection-dispersion equation
【24h】

Compact finite difference scheme for the solution of time fractional advection-dispersion equation

机译:对流分数阶对流扩散方程解的紧凑有限差分格式

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a compact finite difference method is proposed for the solution of time fractional advection-dispersion equation which appears extensively in fluid dynamics. In this approach the time fractional derivative of mentioned equation is approximated by a scheme of order O(τ 2 − α ), 0 < α < 1, and spatial derivatives are replaced with a fourth order compact finite difference scheme. We will prove the unconditional stability and solvability of proposed scheme. Also we show that the method is convergence with convergence order O(τ 2 − α  + h 4). Numerical examples confirm the theoretical results and high accuracy of proposed scheme.
机译:本文提出了一种紧凑的有限差分方法来求解在流体动力学中广泛出现的时间分数阶对流扩散方程。在这种方法中,通过等式O(τ2 by-α),0 <α<1的方案来近似所述方程式的时间分数导数,并用四阶紧致有限差分方案代替空间导数。我们将证明所提出方案的无条件稳定性和可解性。我们还表明,该方法是收敛的,收敛阶数为O(τ2-α+ h 4)。数值算例验证了所提出方案的理论结果和较高的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号