首页> 外文期刊>Nuclear Instruments & Methods in Physics Research. B, Beam Interactions with Materials and Atoms >Correction of systematic errors in scanning force microscopy images with application to ion track micrographs
【24h】

Correction of systematic errors in scanning force microscopy images with application to ion track micrographs

机译:校正扫描力显微镜图像中的系统误差,并将其应用于离子轨迹显微照片

获取原文

摘要

Scanning force microscopy (SFM) is capable of imaging surfaces with resolution on a nanometer scale. This method therefore plays an important role in characterizing radiation-induced defects in solids complementing methods like transmission electron microscopy, small-angle X-ray scattering and optical spectroscopy, to name a few. In particular, the SFM inspection of ionic single-crystals irradiated with energetic heavy ions revealed minute hillocks. The aim to determine the size and shape of these ion tracks as a function of parameters such as energy loss gives rise to critically analyze the interaction between SFM probe tip and sample in order to recognize and take into account systematic errors. Such errors originate especially from the finite size of the sensor tip. This work presents both an uncomplicated model of the SFM imaging process and its experimental verification allowing one to quantify the influence of the tip geometry on the recorded micrographs and correct the resulting data accordingly. For this purpose, a computer program was developed, which is able firstly to determine the tip geometry by means of the known geometry of a calibration standard. Secondly, using this tip geometry, the program reproduces the original sample topography containing the radiation damage structures under study. This is illustrated representatively for artificially generated images and also for a sample micrograph recorded on the surface of U-irradiated CaF_2 to prove the efficiency of the suggested procedures. Afterwards, an existing set of images showing the calibration standard 2D200 (NANOSENSORS) is used to classify the average tip shape. Due to the fact that no large variations in this shape occur, the procedure of imaging the calibration standard for each measurement can be replaced by using this average tip for reconstruction. The article concludes with the elimination of systematic errors in existing data sets of hillock diameters recorded on LiF, CaF_2 and LaF_3 after irradiation with swift heavy ions.
机译:扫描力显微镜(SFM)能够以纳米级分辨率成像表面。因此,这种方法在表征固体中的辐射诱发缺陷方面起着重要的作用,例如透射电子显微镜,小角度X射线散射和光谱学等。特别是,用高能重离子辐照的离子单晶的SFM检查显示出微小的小丘。确定这些离子迹线的大小和形状作为参数(例如能量损失)的函数的目的引起了对SFM探针尖端与样品之间相互作用的严格分析,以便识别并考虑系统误差。这样的错误尤其源自传感器尖端的有限尺寸。这项工作提供了一种简单的SFM成像过程模型及其实验验证,可以量化尖端几何形状对记录的显微照片的影响,并相应地校正结果数据。为此,开发了一种计算机程序,该计算机程序首先能够借助已知的校准标样的几何形状来确定尖端的几何形状。其次,使用该尖端几何形状,程序将复制包含正在研究的辐射损伤结构的原始样品形貌。对于人工生成的图像以及记录在U辐射的CaF_2表面上的样本显微照片,都可以代表这一点,以证明所建议程序的效率。然后,使用现有的一组显示校准标准2D200(NANOSENSORS)的图像对平均笔尖形状进行分类。由于此形状不会发生大的变化,因此可以使用此平均笔尖进行重建来替换每次测量的校准标准品的成像过程。本文的结论是消除了在用快速重离子辐照后在LiF,CaF_2和LaF_3上记录的小丘直径的现有数据集中的系统误差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号