首页> 外文期刊>Nuclear Instruments & Methods in Physics Research. B, Beam Interactions with Materials and Atoms >Dose calculations using artificial neural networks: A feasibility study for photon beams
【24h】

Dose calculations using artificial neural networks: A feasibility study for photon beams

机译:使用人工神经网络进行剂量计算:光子束的可行性研究

获取原文
获取原文并翻译 | 示例

摘要

Direct dose calculations are a crucial requirement for Treatment Planning Systems. Some methods, such as Monte Carlo, explicitly model particle transport, others depend upon tabulated data or analytic formulae. However, their computation time is too lengthy for clinical use, or accuracy is insufficient, especially for recent techniques such as Intensity-Modulated Radiotherapy. Based on artificial neural networks (ANNs), a new solution is proposed and this work extends the properties of such an algorithm and is called NeuRad. Prior to any calculations, a first phase known as the learning process is necessary. Monte Carlo dose distributions in homogeneous media are used, and the ANN is then acquired. According to the training base, it can be used as a dose engine for either heterogeneous media or for an unknown material. In this report, two networks were created in order to compute dose distribution within a homogeneous phantom made of an unknown material and within an inhomogeneous phantom made of water and TA6V4 (titanium alloy corresponding to hip prosthesis). All NeuRad results were compared to Monte Carlo distributions. The latter required about 7 h on a dedicated cluster (10 nodes). NeuRad learning requires between 8 and 18 h (depending upon the size of the training base) on a single low-end computer. However, the results of dose computation with the ANN are available in less than 2 s, again using a low-end computer, for a 150 x 1 x 150 voxels phantom. In the case of homogeneous medium, the mean deviation in the high dose region was less than 1.7%. With a TA6V4 hip prosthesis bathed in water, the mean deviation in the high dose region was less than 4.1%. Further improvements in NeuRad will have to include full 3D calculations, inhomogeneity management and input definitions.
机译:直接剂量计算是治疗计划系统的关键要求。一些方法(例如蒙特卡洛)显式地模拟粒子传输,而另一些方法则依赖于列表数据或解析公式。但是,它们的计算时间对于临床使用而言太长,或者准确性不足,尤其是对于诸如强度调制放射疗法之类的最新技术而言。基于人工神经网络(ANN),提出了一种新的解决方案,这项工作扩展了这种算法的性质,称为NeuRad。在进行任何计算之前,必须先进行称为学习过程的第一阶段。使用均质介质中的蒙特卡洛剂量分布,然后获取ANN。根据培训基础,它可以用作异构介质或未知材料的剂量引擎。在此报告中,创建了两个网络,以计算由未知材料制成的均质体模和由水和TA6V4(对应于髋关节假体的钛合金)制成的非均质体模中的剂量分布。将所有NeuRad结果与蒙特卡洛分布进行比较。后者在专用群集(10个节点)上大约需要7小时。在一台低端计算机上,NeuRad学习需要8到18小时(取决于培训基础的大小)。但是,再次使用低端计算机,对于150 x 1 x 150体素模型,使用ANN进行剂量计算的结果不到2 s。在均匀介质的情况下,高剂量区域的平均偏差小于1.7%。将TA6V4髋关节假体浸入水中后,高剂量区域的平均偏差小于4.1%。 NeuRad的进一步改进将必须包括完整的3D计算,不均匀性管理和输入定义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号