首页> 外文期刊>Nuclear instruments and methods in physics research >The PyHST2 hybrid distributed code for high speed tomographic reconstruction with iterative reconstruction and a priori knowledge capabilities
【24h】

The PyHST2 hybrid distributed code for high speed tomographic reconstruction with iterative reconstruction and a priori knowledge capabilities

机译:PyHST2混合分布式代码,用于具有迭代重建和先验知识能力的高速层析成像重建

获取原文
获取原文并翻译 | 示例

摘要

We present the PyHST2 code which is in service at ESRF for phase-contrast and absorption tomography. This code has been engineered to sustain the high data flow typical of the 3rd generation synchrotron facilities (10 terabytes per experiment) by adopting a distributed and pipelined architecture. The code implements, beside a default filtered backprojection reconstruction, iterative reconstruction techniques with a priori knowledge. These latter are used to improve the reconstruction quality or in order to reduce the required data volume or the deposited dose to the sample and reach a given quality goal. The implemented a priori knowledge techniques are based on the total variation penalization and a new recently found convex functional which is based on overlapping patches. We give details of the different methods and discuss how they are implemented in the PyHST2 code, which is distributed under free license. We provide methods for estimating, in the absence of ground-truth data, the optimal parameters values for a priori techniques.
机译:我们介绍了PyHST2代码,该代码可在ESRF上使用,用于相差和吸收断层扫描。通过采用分布式和流水线体系结构,该代码经过精心设计,可以维持第三代同步加速器设备的典型高数据流(每个实验10 TB)。除了默认的滤波反投影重构之外,该代码还实现了具有先验知识的迭代重构技术。后者用于改善重建质量,或用于减少所需的数据量或样品的沉积剂量并达到给定的质量目标。已实施的先验知识技术基于总变化惩罚和基于重叠斑块的新近发现的凸函数。我们提供了不同方法的详细信息,并讨论了如何在PyHST2代码中实现它们,该代码已获得免费许可。我们提供了在没有真实数据的情况下估算先验技术最佳参数值的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号