首页> 外文期刊>Nuclear instruments and methods in physics research >Acceleration of atmospheric Cherenkov telescope signal processing to real-time speed with the Auto-Pipe design system
【24h】

Acceleration of atmospheric Cherenkov telescope signal processing to real-time speed with the Auto-Pipe design system

机译:利用Auto-Pipe设计系统将大气的Cherenkov望远镜信号处理加速到实时速度

获取原文
获取原文并翻译 | 示例

摘要

The imaging atmospheric Cherenkov technique for high-energy gamma-ray astronomy is emerging as an important new technique for studying the high energy universe. Current experiments have data rates of ≈ 20 TB/year and duty cycles of about 10%. In the future, more sensitive experiments may produce up to 1000 TB/year. The data analysis task for these experiments requires keeping up with this data rate in close to real-time. Such data analysis is a classic example of a streaming application with very high performance requirements. This class of application often benefits greatly from the use of non-traditional approaches for computation including using special purpose hardware (FPGAs and ASICs), or sophisticated parallel processing techniques. However, designing, debugging, and deploying to these architectures is difficult and thus they are not widely used by the astrophysics community. This paper presents the Auto-Pipe design toolset that has been developed to address many of the difficulties in taking advantage of complex streaming computer architectures for such applications. Auto-Pipe incorporates a high-level coordination language, functional and performance simulation tools, and the ability to deploy applications to sophisticated architectures. Using the Auto-Pipe toolset, we have implemented the front-end portion of an imaging Cherenkov data analysis application, suitable for real-time or offline analysis. The application operates on data from the VERITAS experiment, and shows how Auto-Pipe can greatly ease performance optimization and application deployment of a wide variety of platforms. We demonstrate a performance improvement over a traditional software approach of 32 x using an FPGA solution and 3.6× using a multiprocessor based solution.
机译:用于高能伽马射线天文学的成像大气切伦科夫技术正在成为研究高能宇宙的一项重要新技术。当前的实验的数据速率约为20 TB /年,占空比约为10%。将来,更敏感的实验可能会产生高达1000 TB /年的数据。这些实验的数据分析任务需要实时接近该数据速率。这样的数据分析是具有非常高的性能要求的流应用程序的经典示例。此类应用程序通常会受益于使用非传统方法进行计算,包括使用专用硬件(FPGA和ASIC)或复杂的并行处理技术。但是,设计,调试和部署到这些体系结构很困难,因此它们没有被天体物理学界广泛使用。本文介绍了自动管道设计工具集,该工具集已开发出来,可以解决在此类应用中利用复杂的流式计算机体系结构的许多困难。 Auto-Pipe包含高级协调语言,功能和性能仿真工具,以及将应用程序部署到复杂体系结构的能力。使用自动管道工具集,我们实现了成像Cherenkov数据分析应用程序的前端部分,适用于实时或脱机分析。该应用程序对VERITAS实验中的数据进行操作,并展示了Auto-Pipe如何极大地简化各种平台的性能优化和应用程序部署。与使用FPGA解决方案的传统软件方法(32倍,使用基于多处理器的解决方案的3.6倍)相比,我们展示了性能上的提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号