首页> 外文期刊>Nuclear Instruments & Methods in Physics Research >Automated segmentation of synchrotron radiation micro-computed tomography biomedical images using Graph Cuts and neural networks
【24h】

Automated segmentation of synchrotron radiation micro-computed tomography biomedical images using Graph Cuts and neural networks

机译:使用图切和神经网络对同步加速器辐射微计算机断层扫描生物医学图像进行自动分割

获取原文
获取原文并翻译 | 示例

摘要

Synchrotron Radiation (SR) X-ray micro-Computed Tomography (μCT) enables magnified images to be used as a non-invasive and non-destructive technique with a high space resolution for the qualitative and quantitative analyses of biomedical samples. The research on applications of segmentation algorithms to SR-μCT is an open problem, due to the interesting and well-known characteristics of SR images for visualization, such as the high resolution and the phase contrast effect. In this article, we describe and assess the application of the Energy Minimization via Graph Cuts (EMvGC) algorithm for the segmentation of SR-μCT biomedical images acquired at the Synchrotron Radiation for MEdical Physics (SYRMEP) beam line at the Elettra Laboratory (Trieste, Italy). We also propose a method using EMvGC with Artificial Neural Networks (EMANNs) for correcting misclassifications due to intensity variation of phase contrast, which are important effects and sometimes indispensable in certain biomedical applications, although they impair the segmentation provided by conventional techniques. Results demonstrate considerable success in the segmentation of SR-μCT biomedical images, with average Dice Similarity Coefficient 99.88% for bony tissue in Wistar Rats rib samples (EMvGC), as well as 98.95% and 98.02% for scans of Rhodnius prolixus insect samples (Chagas's disease vector) with EMANNs, in relation to manual segmentation. The techniques EMvGC and EMANNs cope with the task of performing segmentation in images with the intensity variation due to phase contrast effects, presenting a superior performance in comparison to conventional segmentation techniques based on thresholding and linearonlinear image filtering, which is also discussed in the present article.
机译:同步辐射(SR)X射线微计算机断层扫描(μCT)可将放大的图像用作具有高空间分辨率的非侵入性和非破坏性技术,用于生物医学样品的定性和定量分析。由于SR图像用于可视化的有趣且众所周知的特性(例如高分辨率和相衬效果),因此将分割算法应用于SR-μCT的研究是一个悬而未决的问题。在本文中,我们描述并评估了通过图割(EMvGC)算法进行的能量最小化对在Elettra实验室(Trieste,Elettra,Inc.)进行同步辐射的医学物理同步辐射(SYRMEP)光束线获取的SR-μCT生物医学图像进行分割的应用。意大利)。我们还提出了一种将EMvGC与人工神经网络(EMANN)结合使用的方法,以纠正由于相衬强度变化而引起的误分类,这是重要的效果,有时在某些生物医学应用中是必不可少的,尽管它们会损害常规技术提供的分割效果。结果表明,在SR-μCT生物医学图像的分割中取得了相当大的成功,Wistar大鼠肋骨样品(EMvGC)的骨组织的平均骰子相似系数为99.88%,而Rhodnius prolixus昆虫样品的扫描的平均骰子相似系数为98.95%和98.02%(Chagas's疾病向量)与EMANN进行手动细分。 EMvGC和EMANNs技术可以解决由于相位对比效应而导致图像强度发生变化的图像分割的问题,与基于阈值和线性/非线性图像滤波的传统分割技术相比,该技术具有优越的性能。目前的文章。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号