首页> 外文期刊>Nuclear instruments and methods in physics research >Performance evaluation of image denoising developed using convolutional denoising autoencoders in chest radiography
【24h】

Performance evaluation of image denoising developed using convolutional denoising autoencoders in chest radiography

机译:卷积去噪自动编码器在胸部X射线照相中开发的图像去噪性能评估

获取原文
获取原文并翻译 | 示例

摘要

When processing medical images, image denoising is an important pre-processing step. Various image denoising algorithms have been developed in the past few decades. Recently, image denoising using the deep learning method has shown excellent performance compared to conventional image denoising algorithms. In this study, we introduce an image denoising technique based on a convolutional denoising autoencoder (CDAE) and evaluate clinical applications by comparing existing image denoising algorithms. We train the proposed CDAE model using 3000 chest radiograms training data. To evaluate the performance of the developed CDAE model, we compare it with conventional denoising algorithms including median filter, total variation (TV) minimization, and non-local mean (NLM) algorithms. Furthermore, to verify the clinical effectiveness of the developed denoising model with CDAE, we investigate the performance of the developed denoising algorithm on chest radiograms acquired from real patients. The results demonstrate that the proposed denoising algorithm developed using CDAE achieves a superior noise-reduction effect in chest radiograms compared to TV minimization and NLM algorithms, which are state-of-the-art algorithms for image noise reduction. For example, the peak signal-to-noise ratio and structure similarity index measure of CDAE were at least 10% higher compared to conventional denoising algorithms. In conclusion, the image denoising algorithm developed using CDAE effectively eliminated noise without loss of information on anatomical structures in chest radiograms. It is expected that the proposed denoising algorithm developed using CDAE will be effective for medical images with microscopic anatomical structures, such as terminal bronchioles.
机译:在处理医学图像时,图像去噪是重要的预处理步骤。在过去的几十年中已经开发了各种图像去噪算法。最近,与传统的图像去噪算法相比,使用深度学习方法进行图像去噪已显示出出色的性能。在这项研究中,我们介绍了一种基于卷积去噪自动编码器(CDAE)的图像去噪技术,并通过比较现有的图像去噪算法来评估临床应用。我们使用3000幅胸部X线照片训练数据训练建议的CDAE模型。为了评估已开发的CDAE模型的性能,我们将其与传统的降噪算法进行了比较,包括中值滤波,总变异(TV)最小化和非局部均值(NLM)算法。此外,为了验证用CDAE开发的降噪模型的临床有效性,我们调查了从真实患者获得的胸部X光片上开发的降噪算法的性能。结果表明,与电视最小化和NLM算法相比,使用CDAE开发的拟议降噪算法在胸部X光片中具有出色的降噪效果,后者是用于图像降噪的最新算法。例如,与传统的降噪算法相比,CDAE的峰信噪比和结构相似性指标至少高出10%。总之,使用CDAE开发的图像去噪算法可有效消除噪声,而不会丢失胸部X线片中解剖结构的信息。预期使用CDAE开发的拟议的降噪算法将对具有微观解剖结构(例如细支气管)的医学图像有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号