首页> 外文期刊>Biomedical signal processing and control >Medical image denoising system based on stacked convolutional autoencoder for enhancing 2-dimensional gel electrophoresis noise reduction
【24h】

Medical image denoising system based on stacked convolutional autoencoder for enhancing 2-dimensional gel electrophoresis noise reduction

机译:基于堆叠卷积性的医学图像去噪系统提高二维凝胶电泳降噪

获取原文
获取原文并翻译 | 示例

摘要

Image denoising is the technique of removing noise or distortions from an image. During medical image acquisition, random noise is added, which results in a lower contrast in those images. For that, image denoising is a crucial task for medical imaging analysis. In this study, a denoising system using three heterogeneous medical datasets is proposed based on stacked convolutional autoencoder (SCAE) technique. To validate its efficiency, different evaluation metrics are used, such as mean squared error (MSE), Peak signal-to-noise ratio (PSNR), contrast-to-noise ratio (CNR), structural similarity index measure (SSIM) and cross correlation (CC). The proposed denoising system gives good results among the medical and microscopic datasets that are used for training. The best average results obtained are 0.0039 for MSE, 24.07 for PSNR, 0.1220 for CNR, 0.85 for SSIM, and 0.6358 for CC. Then, the proposed SCAE denoising system was applied to the LECB 2-D PAGE database for denoising real 2-DGE images. The results of denoising 2-DGE images are evaluated by MSE, spot efficiency, false discovery rate (FDR), and signal-to-noise ratio (SNR). The best average results for 2-DGE images are 0.014 for MSE, 75 spot efficiency, 36.3 for FDR and 18.41 for SNR. The proposed system has enhanced the denoising of 2DGE images by 0.9% to 17.6% when compared to other techniques.
机译:图像去噪是从图像中去除噪声或畸变的技术。在医学图像获取期间,添加随机噪声,这导致这些图像中的对比度较低。为此,图像去噪是医学成像分析的关键任务。在本研究中,基于堆叠的卷积自动化器(SCAE)技术,提出了一种使用三个异构医用数据集的去噪系统。为了验证其效率,使用不同的评估度量,例如平均平方误差(MSE),峰值信噪比(PSNR),对比度 - 噪声比(CNR),结构相似性指数度量(SSIM)和交叉相关性(CC)。拟议的去噪系统在用于培训的医疗和微观数据集之间具有良好的结果。获得的最佳平均结果为0.0039,适用于MSE,24.07,用于CNR为0.1220,SSIM为0.85,CC为0.6358。然后,将所提出的SCAE去噪系统应用于LECB 2-D页数据库以去噪真正的2-DGE图像。通过MSE,现货效率,假发现率(FDR)和信噪比(SNR)评估去噪2-DGE图像的结果。 MSE的2-DGE图像的最佳平均结果为0.014,适用于MSE,75个点效率,36.3,用于SNR的FDR和18.41。与其他技术相比,该拟议的系统提高了2dge图像的去噪量0.9%至17.6%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号