首页> 外文期刊>Nuclear Instruments & Methods in Physics Research >Data fusion for a vision-aided radiological detection system: Correlation methods for single source tracking
【24h】

Data fusion for a vision-aided radiological detection system: Correlation methods for single source tracking

机译:视觉辅助放射学检测系统的数据融合:单源跟踪的相关方法

获取原文
获取原文并翻译 | 示例

摘要

Data fusion between 3D vision sensors and radiological sensors can enable data improvements and novel applications for nuclear safeguards. While the radiological sensors allow for nuclear threat detection, the addition of a 3D vision sensor can allow for improved threat detection when using its ability to track objects in a scene. Ten measurements were taken that involved three to four people walking in a room where one of the persons carried a Cf-252 source in a backpack. A data-fusion algorithm was used to correlate the radiological and vision data. The vision trajectory with the highest correlation value was selected as the trajectory carrying the radiological material. Filtering and refining the radiological and vision data was also explored in search of improvements. For unaltered data, the data-fusion approach correctly identified to the source-carrying trajectory for all ten measurements in all cases except when using data where counting statistics were low or the signal-to-background ratio was low. Filtering and refining the data improved the correlation values for all trajectories as expected. The presented algorithm has proven to be an effective means of data fusion between the two different types of sensor data. These initial results show the effectiveness of incorporating 3D vision in radiological detection systems.
机译:3D视觉传感器和放射传感器之间的数据融合可以实现数据改进和核保护的新应用。虽然放射线传感器允许核威胁检测,但是当使用其在场景中跟踪物体的能力时,添加3D视觉传感器可以允许改善的威胁检测。涉及十次测量,涉及三到四人在一个房间行走,其中一个人在背包中携带CF-252源。数据融合算法用于关联放射学和视觉数据。选择具有最高相关值的视觉轨迹作为承载放射材料的轨迹。还探讨了过滤和精炼放射学和视觉数据以寻求改进。对于未妨碍数据,除了使用计数统计量低的数据或信号到后台比率低时,可以将数据融合方法正确识别到所有十种测量的源轨迹。过滤和改进数据按预期提高所有轨迹的相关值。已呈现的算法已被证明是两种不同类型的传感器数据之间的数据融合的有效手段。这些初始结果表明,在放射检测系统中掺入3D视觉的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号