【24h】

Data fusion methods for improving resolution from a gamma-ray scintillator network

机译:用于提高伽马射线闪烁器网络分辨率的数据融合方法

获取原文
获取原文并翻译 | 示例

摘要

Enhancements in gamma-ray spectral resolution have been realized through hardware development, including low-defect scintillation materials, solid-state detector technology, and low-noise read-out electronics. Enhanced resolution has also been provided by deconvoluting hardware response through the application of spectral unfolding techniques. However, fusing data from multiple independent measurements, both before and after spectral unfolding, to obtain more information than exists from a single measurement represents a largely unexplored path. This work provides a statistical foundation from which data acquired from an arbitrary number of independent gamma-ray spectra can be fused to yield higher resolution than the constituent measurements yield in isolation. Specifically, three data fusion techniques are considered: (i) pulse-height spectrum fusion, (ii) unfolded fluence linear opinion pool, and (iii) unfolded fluence logarithmic opinion pool. We explore the qualitative characteristics of these methods. We then apply them to spectra of thallium-doped sodium iodide [NaI(Tl)] and bismuth germanate (BGO), where all spectra are provided by MCNP simulations. Our results demonstrate improved resolution, thus establishing the methods as an inexpensive alternative to hardware upgrades. Moreover, our results demonstrate that these results have the potential to expand the capability of cutting-edge technology to provide currently unachievable resolution.
机译:通过硬件开发实现了伽马射线谱分辨率的增强,包括低缺陷的闪烁材料,固态探测器技术和低噪声读出电子设备。通过应用光谱展开技术,还通过解构硬件响应来提供增强的分辨率。然而,从频谱展开之前和之后的多个独立测量的融合数据,以获得比从单个测量中存在的更多信息代表了一个很大程度上未开发的路径。这项工作提供了一种统计基础,从中可以融合从任意数量的独立伽马射线谱获取的数据,以产生比分离的成分测量产量更高的分辨率。具体地,考虑了三种数据融合技术:(i)脉冲高度频谱融合,(ii)展开的流量线性意见池,(iii)展开的流量对数型池。我们探讨了这些方法的定性特征。然后,我们将它们应用于铊掺杂的碘化钠[Nai(TL)]和铋(BGO)的光谱,其中所有光谱都由MCNP模拟提供。我们的结果表明了改进的分辨率,从而将方法建立为硬件升级的廉价替代品。此外,我们的结果表明,这些结果有可能扩大尖端技术的能力,以提供目前无法实现的分辨率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号