首页> 外文期刊>Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment >Applications of principal component analysis for energy reconstruction in position-sensitive semiconductor detectors
【24h】

Applications of principal component analysis for energy reconstruction in position-sensitive semiconductor detectors

机译:主成分分析在位置敏感半导体探测器能量重建中的应用

获取原文
获取原文并翻译 | 示例

摘要

Semiconductor detectors with pixelated anodes offer a desirable combination of position sensitivity and energy resolution that are suitable for numerous applications in gamma-ray detection and imaging. Pixelization of electrodes also entails a non-uniform amplitude response as a function of gamma-ray interaction position. Energy calibrations as a function of interaction position improve energy resolution, but systematic errors in the energy reconstruction process persist and limit energy resolution at fixed electronic noise. Digitization of signals induced on collecting and adjacent electrodes offers rich information about gamma-ray interactions and their charge drift and collection as a function of time. Despite the abundance of signals for each interaction, human intuition and rule-based approaches fail to utilize the entire set of observed signals to mitigate the sources of systematic error. In order to maximize the utility of digitized signals and improve energy resolution, principal component analysis is applied towards digitized signals observed in semiconductor detectors with pixelated anodes. Principal components identified in the process form the basis for position-specific energy corrections. By leveraging this additional information encoded within digitized signals, energy resolution improves by factors between 10 and 15% with respect to full-width at half and tenth maximum values. The feature that accounts for the maximum amount of explained variance between interactions in any given pixel correlates strongly with the depth of interaction.
机译:具有像素化阳极的半导体探测器可提供理想的位置灵敏度和能量分辨率组合,适用于伽马射线探测和成像中的许多应用。电极的像素化还带来了不均匀的幅度响应,这是伽马射线相互作用位置的函数。作为相互作用位置的函数的能量校准提高了能量分辨率,但是能量重建过程中的系统误差仍然存在,并限制了固定电子噪声下的能量分辨率。在收集电极和相邻电极上感应的信号的数字化可提供有关伽马射线相互作用及其电荷漂移和收集随时间变化的丰富信息。尽管每次交互都有大量信号,但是人类的直觉和基于规则的方法仍无法利用观察到的信号的全部来减轻系统错误的来源。为了最大程度地利用数字化信号并提高能量分辨率,将主成分分析应用于在具有像素化阳极的半导体探测器中观察到的数字化信号。过程中确定的主要成分构成了针对特定位置的能量校正的基础。通过利用数字信号中编码的这些附加信息,能量分辨率相对于半角和十进制最大值的全角提高了10%到15%。解释任何给定像素中的相互作用之间的最大解释方差的特征与相互作用的深度密切相关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号