首页> 外文期刊>Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment >Time-resolved dosimetry of pulsed electron beams in very high dose-rate, FLASH irradiation for radiotherapy preclinical studies
【24h】

Time-resolved dosimetry of pulsed electron beams in very high dose-rate, FLASH irradiation for radiotherapy preclinical studies

机译:脉冲电子束在高剂量率,FLASH照射下的时间分辨剂量学,用于放射治疗的临床前研究

获取原文
获取原文并翻译 | 示例

摘要

Most anticancer radiation therapy facilities are based on linear electron accelerators with electron-photon conversion providing dose-rates in the range 0.03-0.40 Gy.s(-1), and treatment plans usually involve daily fractions of 2 Gy cumulated for up to reaching a total dose close to the limit of tolerance of the normal tissues that surround tumors. We recently developed another methodology named "FLASH" that relies on very high dose-rate facilities and consists in delivering >= 10 Gy in a single microsecond pulse of relativistic electrons, or else in a limited number of pulses of 1-2 Gy each given in <= 100 ms temporal sequence. In mice FLASH was found to elicit a dramatic decrease of damage to normal tissues whilst keeping the anti-tumor efficiency unchanged. In the following we describe the methods used for beam monitoring in the FLASH mode with emphasis on techniques that provide proportional, time-resolved dosimetry of radiation at the submicrosecond time scale. These methods include measurement of the electron fluence, optically monitored chemical dosimeters in water, solid scintillation and Cerenkov light emission. An application to the calibration of Gafchromic (TM) films is described and the minimal requirements for dose monitoring in preclinical assays are discussed. Good repeatability and linearity of these techniques in a range of peak dose-rates from 2x10(2) to 4x10(7) Gy.s(-1) and from 1 mGy to over 30 Gy per microsecond pulse have been obtained with an overall precision better than +/- 2%.
机译:大多数抗癌放射疗法设施都基于具有电子-光子转换功能的线性电子加速器,其剂量率范围为0.03-0.40 Gy.s(-1),治疗计划通常涉及每天累积2 Gy的分数,直至达到总剂量接近肿瘤周围正常组织的耐受极限。我们最近开发了另一种名为“ FLASH”的方法,该方法依赖于非常高的剂量率设备,并且可以在相对微电子的单个微秒脉冲中提供大于等于10 Gy的脉冲,或者在给定的有限数量的1-2 Gy脉冲中进行传递在<= 100 ms的时间序列中。在小鼠中,发现FLASH引起对正常组织的损伤显着减少,同时保持了抗肿瘤效率不变。在下文中,我们将介绍在FLASH模式下用于光束监视的方法,重点介绍在亚微秒级提供按比例,时间分辨的放射剂量的技术。这些方法包括电子注量的测量,水中的光学监测化学剂量计,固体闪烁和切伦科夫发光。描述了在Gafchromic(TM)膜校准中的应用,并讨论了在临床前测定中监测剂量的最低要求。这些技术在从2x10(2)到4x10(7)Gy.s(-1)的峰值剂量率以及每微秒脉冲从1 mGy到超过30 Gy的峰值剂量率范围内具有良好的重复性和线性,并且具有较高的整体精度优于+/- 2%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号